Stan Math Library  2.14.0
reverse mode automatic differentiation
gumbel_lpdf.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_GUMBEL_LPDF_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_GUMBEL_LPDF_HPP
3 
4 #include <boost/random/uniform_01.hpp>
5 #include <boost/random/variate_generator.hpp>
20 #include <cmath>
21 
22 namespace stan {
23  namespace math {
24 
25  template <bool propto, typename T_y, typename T_loc, typename T_scale>
27  gumbel_lpdf(const T_y& y, const T_loc& mu, const T_scale& beta) {
28  static const char* function("gumbel_lpdf");
30  T_partials_return;
31 
32  using std::log;
33  using std::exp;
35 
36  if (!(stan::length(y)
37  && stan::length(mu)
38  && stan::length(beta)))
39  return 0.0;
40 
41  T_partials_return logp(0.0);
42 
43  check_not_nan(function, "Random variable", y);
44  check_finite(function, "Location parameter", mu);
45  check_positive(function, "Scale parameter", beta);
46  check_consistent_sizes(function,
47  "Random variable", y,
48  "Location parameter", mu,
49  "Scale parameter", beta);
50 
52  return 0.0;
53 
55  operands_and_partials(y, mu, beta);
56 
57  VectorView<const T_y> y_vec(y);
58  VectorView<const T_loc> mu_vec(mu);
59  VectorView<const T_scale> beta_vec(beta);
60  size_t N = max_size(y, mu, beta);
61 
64  T_partials_return, T_scale> log_beta(length(beta));
65  for (size_t i = 0; i < length(beta); i++) {
66  inv_beta[i] = 1.0 / value_of(beta_vec[i]);
68  log_beta[i] = log(value_of(beta_vec[i]));
69  }
70 
71  for (size_t n = 0; n < N; n++) {
72  const T_partials_return y_dbl = value_of(y_vec[n]);
73  const T_partials_return mu_dbl = value_of(mu_vec[n]);
74 
75  const T_partials_return y_minus_mu_over_beta
76  = (y_dbl - mu_dbl) * inv_beta[n];
77 
79  logp -= log_beta[n];
81  logp += -y_minus_mu_over_beta - exp(-y_minus_mu_over_beta);
82 
83  T_partials_return scaled_diff = inv_beta[n]
84  * exp(-y_minus_mu_over_beta);
86  operands_and_partials.d_x1[n] -= inv_beta[n] - scaled_diff;
88  operands_and_partials.d_x2[n] += inv_beta[n] - scaled_diff;
90  operands_and_partials.d_x3[n]
91  += -inv_beta[n] + y_minus_mu_over_beta * inv_beta[n]
92  - scaled_diff * y_minus_mu_over_beta;
93  }
94  return operands_and_partials.value(logp);
95  }
96 
97  template <typename T_y, typename T_loc, typename T_scale>
98  inline
100  gumbel_lpdf(const T_y& y, const T_loc& mu, const T_scale& beta) {
101  return gumbel_lpdf<false>(y, mu, beta);
102  }
103 
104  }
105 }
106 #endif
107 
VectorView< T_return_type, false, true > d_x2
void check_finite(const char *function, const char *name, const T_y &y)
Check if y is finite.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition: value_of.hpp:16
return_type< T_y, T_loc, T_scale >::type gumbel_lpdf(const T_y &y, const T_loc &mu, const T_scale &beta)
Definition: gumbel_lpdf.hpp:27
fvar< T > log(const fvar< T > &x)
Definition: log.hpp:14
T_return_type value(double value)
Returns a T_return_type with the value specified with the partial derivatves.
size_t length(const std::vector< T > &x)
Definition: length.hpp:10
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition: return_type.hpp:27
Metaprogram to determine if a type has a base scalar type that can be assigned to type double...
fvar< T > exp(const fvar< T > &x)
Definition: exp.hpp:10
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
This class builds partial derivatives with respect to a set of operands.
VectorView< T_return_type, false, true > d_x3
size_t max_size(const T1 &x1, const T2 &x2)
Definition: max_size.hpp:9
VectorBuilder allocates type T1 values to be used as intermediate values.
void check_positive(const char *function, const char *name, const T_y &y)
Check if y is positive.
VectorView is a template expression that is constructed with a container or scalar, which it then allows to be used as an array using operator[].
Definition: VectorView.hpp:48
void check_consistent_sizes(const char *function, const char *name1, const T1 &x1, const char *name2, const T2 &x2)
Check if the dimension of x1 is consistent with x2.
boost::math::tools::promote_args< typename partials_type< typename scalar_type< T1 >::type >::type, typename partials_type< typename scalar_type< T2 >::type >::type, typename partials_type< typename scalar_type< T3 >::type >::type, typename partials_type< typename scalar_type< T4 >::type >::type, typename partials_type< typename scalar_type< T5 >::type >::type, typename partials_type< typename scalar_type< T6 >::type >::type >::type type
VectorView< T_return_type, false, true > d_x1

     [ Stan Home Page ] © 2011–2016, Stan Development Team.