• Anaconda Platform
  • – Welcome
  • – Anaconda
  • – Anaconda Repository
  • – Anaconda Accelerate
  • – Anaconda Adam
  • – Anaconda Enterprise Notebooks
  • – Anaconda Fusion
  • – Anaconda Scale
  • – Anaconda Cloud
  • Continuum-sponsored OSS programs
  • – Blaze
  • – Bokeh
  • – Conda
  • – dask
  • – llvmlite
  • – PhosphorJS
  • – Numba
    • User Manual
    • Reference Manual
      • Types and signatures
      • Just-in-Time compilation
      • Ahead-of-Time compilation
      • Utilities
      • Environment variables
      • Supported Python features
      • Supported NumPy features
      • Deviations from Python semantics
      • Floating-point pitfalls
    • Numba for CUDA GPUs
    • CUDA Python Reference
    • Numba for HSA APUs
    • Extending Numba
    • Developer Manual
    • Numba Enhancement Proposals
    • Glossary
    • Release Notes
  • Top OSS programs

Reference ManualΒΆ

  • Types and signatures
    • Rationale
    • Signatures
    • Basic types
      • Numbers
      • Arrays
    • Advanced types
      • Inference
      • Numpy scalars
      • Arrays
      • Optional types
  • Just-in-Time compilation
    • JIT functions
    • Generated JIT functions
    • Dispatcher objects
    • Vectorized functions (ufuncs and DUFuncs)
    • C callbacks
  • Ahead-of-Time compilation
  • Utilities
    • Dealing with pointers
  • Environment variables
    • Errors and warnings display
    • Debugging
    • Compilation options
    • GPU support
    • Threading Control
  • Supported Python features
    • Language
      • Constructs
      • Function calls
        • Recursive calls
      • Generators
    • Built-in types
      • int, bool
      • float, complex
      • tuple
      • list
      • set
      • None
      • bytes, bytearray, memoryview
    • Built-in functions
    • Standard library modules
      • array
      • cmath
      • collections
      • ctypes
      • enum
      • math
      • operator
      • random
    • Third-party modules
      • cffi
  • Supported NumPy features
    • Scalar types
    • Array types
      • Array access
      • Attributes
        • The flags object
        • The flat object
        • The real and imag attributes
      • Calculation
      • Other methods
    • Functions
      • Linear algebra
      • Reductions
      • Other functions
      • Literal arrays
    • Modules
      • random
        • Initialization
        • Simple random data
        • Permutations
        • Distributions
      • stride_tricks
    • Standard ufuncs
      • Limitations
      • Math operations
      • Trigonometric functions
      • Bit-twiddling functions
      • Comparison functions
      • Floating functions
  • Deviations from Python semantics
    • Integer width
    • Boolean inversion
    • Global and closure variables
  • Floating-point pitfalls
    • Precision and accuracy
      • Math library implementations
      • Linear algebra
      • Mixed-types operations
    • Warnings and errors
Docs Home
Continuum Analytics Home
More Help & Support
2017 Continuum Analytics, Inc.
All Rights Reserved.
Privacy Policy | EULA