Stan Math Library  2.14.0
reverse mode automatic differentiation
pareto_cdf_log.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_PARETO_CDF_LOG_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_PARETO_CDF_LOG_HPP
3 
15 #include <boost/random/exponential_distribution.hpp>
16 #include <boost/random/variate_generator.hpp>
17 #include <cmath>
18 #include <limits>
19 
20 namespace stan {
21  namespace math {
22 
23  template <typename T_y, typename T_scale, typename T_shape>
25  pareto_cdf_log(const T_y& y, const T_scale& y_min, const T_shape& alpha) {
27  T_partials_return;
28 
29  if ( !( stan::length(y) && stan::length(y_min) && stan::length(alpha) ) )
30  return 0.0;
31 
32  static const char* function("pareto_cdf_log");
33 
34  using std::log;
35  using std::exp;
36 
37  T_partials_return P(0.0);
38 
39  check_not_nan(function, "Random variable", y);
40  check_nonnegative(function, "Random variable", y);
41  check_positive_finite(function, "Scale parameter", y_min);
42  check_positive_finite(function, "Shape parameter", alpha);
43  check_consistent_sizes(function,
44  "Random variable", y,
45  "Scale parameter", y_min,
46  "Shape parameter", alpha);
47 
48  VectorView<const T_y> y_vec(y);
49  VectorView<const T_scale> y_min_vec(y_min);
50  VectorView<const T_shape> alpha_vec(alpha);
51  size_t N = max_size(y, y_min, alpha);
52 
54  operands_and_partials(y, y_min, alpha);
55 
56  // Explicit return for extreme values
57  // The gradients are technically ill-defined, but treated as zero
58  for (size_t i = 0; i < stan::length(y); i++) {
59  if (value_of(y_vec[i]) < value_of(y_min_vec[i]))
60  return operands_and_partials.value(negative_infinity());
61  }
62 
63  for (size_t n = 0; n < N; n++) {
64  // Explicit results for extreme values
65  // The gradients are technically ill-defined, but treated as zero
66  if (value_of(y_vec[n]) == std::numeric_limits<double>::infinity()) {
67  return operands_and_partials.value(0.0);
68  }
69 
70  const T_partials_return log_dbl = log(value_of(y_min_vec[n])
71  / value_of(y_vec[n]));
72  const T_partials_return y_min_inv_dbl = 1.0 / value_of(y_min_vec[n]);
73  const T_partials_return alpha_dbl = value_of(alpha_vec[n]);
74 
75  const T_partials_return Pn = 1.0 - exp(alpha_dbl * log_dbl);
76 
77  P += log(Pn);
78 
80  operands_and_partials.d_x1[n]
81  += alpha_dbl * y_min_inv_dbl * exp((alpha_dbl + 1) * log_dbl) / Pn;
83  operands_and_partials.d_x2[n]
84  -= alpha_dbl * y_min_inv_dbl * exp(alpha_dbl * log_dbl) / Pn;
86  operands_and_partials.d_x3[n]
87  -= exp(alpha_dbl * log_dbl) * log_dbl / Pn;
88  }
89  return operands_and_partials.value(P);
90  }
91 
92  }
93 }
94 #endif
VectorView< T_return_type, false, true > d_x2
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition: value_of.hpp:16
fvar< T > log(const fvar< T > &x)
Definition: log.hpp:14
T_return_type value(double value)
Returns a T_return_type with the value specified with the partial derivatves.
size_t length(const std::vector< T > &x)
Definition: length.hpp:10
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
boost::math::tools::promote_args< typename scalar_type< T1 >::type, typename scalar_type< T2 >::type, typename scalar_type< T3 >::type, typename scalar_type< T4 >::type, typename scalar_type< T5 >::type, typename scalar_type< T6 >::type >::type type
Definition: return_type.hpp:27
Metaprogram to determine if a type has a base scalar type that can be assigned to type double...
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > exp(const fvar< T > &x)
Definition: exp.hpp:10
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
This class builds partial derivatives with respect to a set of operands.
VectorView< T_return_type, false, true > d_x3
size_t max_size(const T1 &x1, const T2 &x2)
Definition: max_size.hpp:9
return_type< T_y, T_scale, T_shape >::type pareto_cdf_log(const T_y &y, const T_scale &y_min, const T_shape &alpha)
VectorView is a template expression that is constructed with a container or scalar, which it then allows to be used as an array using operator[].
Definition: VectorView.hpp:48
void check_consistent_sizes(const char *function, const char *name1, const T1 &x1, const char *name2, const T2 &x2)
Check if the dimension of x1 is consistent with x2.
boost::math::tools::promote_args< typename partials_type< typename scalar_type< T1 >::type >::type, typename partials_type< typename scalar_type< T2 >::type >::type, typename partials_type< typename scalar_type< T3 >::type >::type, typename partials_type< typename scalar_type< T4 >::type >::type, typename partials_type< typename scalar_type< T5 >::type >::type, typename partials_type< typename scalar_type< T6 >::type >::type >::type type
VectorView< T_return_type, false, true > d_x1
double negative_infinity()
Return negative infinity.
Definition: constants.hpp:130

     [ Stan Home Page ] © 2011–2016, Stan Development Team.