• Anaconda Platform
  • – Welcome
  • – Anaconda Distribution
  • – Anaconda Repository
  • – Anaconda Accelerate
  • – Anaconda Adam
  • – Anaconda Enterprise Notebooks
  • – Anaconda Fusion
  • – Anaconda Scale
  • – Anaconda Cloud
  • Anaconda-sponsored OSS programs
  • – Blaze
  • – Bokeh
  • – Conda
  • – dask
  • – llvmlite
  • – PhosphorJS
  • – Numba
  • – Cython
    • Getting Started
    • Tutorials
      • Basic Tutorial
      • Calling C functions
      • Using C libraries
      • Extension types (aka. cdef classes)
      • pxd files
      • Caveats
      • Profiling
      • Unicode and passing strings
      • Memory Allocation
      • Pure Python Mode
      • Working with NumPy
      • Working with Python arrays
      • Further reading
      • Related work
      • Appendix: Installing MinGW on Windows
    • Users Guide
    • Reference Guide
    • Cython Changelog

Tutorials¶

  • Basic Tutorial
    • The Basics of Cython
    • Cython Hello World
    • Fibonacci Fun
    • Primes
    • Language Details
  • Calling C functions
    • Dynamic linking
    • External declarations
    • Naming parameters
  • Using C libraries
    • Defining external declarations
    • Writing a wrapper class
    • Memory management
    • Compiling and linking
    • Mapping functionality
    • Handling errors
    • Testing the result
    • Callbacks
  • Extension types (aka. cdef classes)
  • pxd files
  • Caveats
  • Profiling
    • Cython Profiling Basics
    • Profiling Tutorial
  • Unicode and passing strings
    • Python string types in Cython code
    • String literals
    • General notes about C strings
    • Passing byte strings
    • Accepting strings from Python code
    • Dealing with “const”
    • Decoding bytes to text
    • Encoding text to bytes
    • C++ strings
    • Auto encoding and decoding
    • Source code encoding
    • Single bytes and characters
    • Narrow Unicode builds
    • Iteration
    • Windows and wide character APIs
  • Memory Allocation
  • Pure Python Mode
    • Augmenting .pxd
    • Magic Attributes
    • Tips and Tricks
  • Working with NumPy
    • Adding types
    • Efficient indexing
    • Tuning indexing further
    • More generic code
  • Working with Python arrays
    • Safe usage with memory views
    • Zero-overhead, unsafe access to raw C pointer
    • Cloning, extending arrays
    • API reference
  • Further reading
  • Related work
  • Appendix: Installing MinGW on Windows
Docs Home
Anaconda Home
More Help & Support
2017 Anaconda, Inc.
All Rights Reserved.
Privacy Policy | EULA