• Anaconda Platform
  • – Welcome
  • – Anaconda Distribution
  • – Anaconda Repository
  • – Anaconda Accelerate
  • – Anaconda Adam
  • – Anaconda Enterprise Notebooks
  • – Anaconda Fusion
  • – Anaconda Scale
  • – Anaconda Cloud
  • Anaconda-sponsored OSS programs
  • – Blaze
  • – Bokeh
  • – Conda
  • – dask
    • Dask
      • Familiar user interface
      • Scales from laptops to clusters
      • Complex Algorithms
      • Index
        • Install Dask
        • Use Cases
        • Examples
        • Dask Cheat Sheet
        • Array
        • Bag
        • DataFrame
        • Delayed
          • Overview
          • API
          • Working with Collections
        • Futures
        • Machine Learning
        • Distributed Scheduling
        • Scheduler Overview
        • Choosing between Schedulers
        • Shared Memory
        • Scheduling in Depth
        • Inspecting Dask objects
        • Diagnostics
        • Overview
        • Specification
        • Custom Graphs
        • Optimization
        • Debugging
        • Contact and Support
        • Changelog
        • Presentations On Dask
        • Development Guidelines
        • Frequently Asked Questions
        • Comparison to PySpark
        • Opportunistic Caching
        • Internal Data Ingestion
        • Remote Data Services
        • Citations
        • Funding
    • Dask Distributed
  • – llvmlite
  • – PhosphorJS
  • – Numba

DelayedΒΆ

Sometimes problems don’t fit into one of the collections like dask.array or dask.dataframe. In these cases, users can parallelize custom algorithms using the simpler dask.delayed interface. This allows one to create graphs directly with a light annotation of normal python code.

>>> x = dask.delayed(inc)(1)
>>> y = dask.delayed(inc)(2)
>>> z = dask.delayed(add)(x, y)
>>> z.compute()
7
>>> z.vizualize()
simple task graph created with dask.delayed
  • Overview
  • API
  • Working with Collections
Docs Home
Anaconda Home
More Help & Support
2017 Anaconda, Inc.
All Rights Reserved.
Privacy Policy | EULA