Package Itable 2.0

Ocheredko Oleksandr

FUNCTIONALITY

1. Constructs tables of counts and proportions out of data sets.
2. Inserts table into Excel and Word documents using clipboard, into LaTeX, HTML, Markdown and
reStructuredText documents by the knitr::kable agency.

3. Moulds table into acceptable for log-linear modeling data.frame.
4. Performs log-linear modeling.

5. Performs power analysis.

In order to perform log-linear and power analyses GSL: GNU Scientific Library has to be installed first.
GSL: GNU Scientific Library!. So far features 4,5 included in Unix (MacOS) package installer v.2.0.1 only

Thttp://www.gnu.org/software/gsl
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Construction of tables of counts

and proportions out of data sets

Use function table_ f{):

table_ f(data, datavars, type = 1, digits =
2, extended = FALSE, MV = FALSE, c¢b =
FALSE)

Examples:

data(sdata, "ltable")
sdata

## a b c d
## 1 TRUE NA male A
## 2 NA 1 male B
## 3 FALSE 1 male A
## 4 TRUE 1 male <NA>
## 5 TRUE 1 male A
## 6 TRUE 2 female B
## 7 FALSE 2 female A
## 8 FALSE 2 female B
## 9 TRUE 2 female A
## 10 FALSE 2 female B
## 11 NA NA  <NA> <NA>
## 12 TRUE 1 male A
## 13 FALSE 1 male B
## 14 FALSE 1 male A
## 15 TRUE 1 male B
## 16 TRUE 1 male A
## 17 TRUE 2 female B
## 18 FALSE 2 female A
## 19 FALSE 2 female B
## 20 TRUE 2 female A
## 21 FALSE 2 female B
## 22 NA NA  <NA> <NA>

lapply(sdata,class)

## $a
## [1] "logical"
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##
## $b
## [1]
##
## $c
## [1]
##
## $d
## [1]

"numeric"

"factor"

"character"

[ built data.frame sdata with fields of different basic
classes just for demonstration. No other meaning
applies. Let’s build a simple table across levels of

a:

ltable: :table_f(sdata, "a")

## a:FALSE a:TRUE Total, N
##t 1 9 10 19

One might have interest in NA values for there may
be quite informative pattern across levels or levels
combinations. Use MV=TRUE. It’s a part of data

exploration:

ltable: :table_f(sdata, "a", TRUE, TRUE)

##  a:FALSE a:TRUE NA Total, N
## 1 9 10 3 22

Unrelated option extended=TRUE is used just to
demonstrate that abundant args have no effect. If
one wants to tabulate numerous factors it’s impor-
tant to arrange them properly in sequence of pre-
sentation delimited with comma “”. Sorted levels
of all but last variable are rolled out vertically in
indicated sequence, the last has its sorted levels

spread by columns.



CONSTRUCTION OF TABLES OF COUNTS AND PROPORTIONS OUT OF DATA SETS

ltable: :table_f(sdata, "b,c") # a b c d:A
## 1 FALSE 1 female 0
#i#t 2 FALSE 1 male 0.667
## b c:female c:male Total, N ## 3 FALSE ) female 0.333
w1 1 0 9 O w4 FALSE 2 male 0
#t 2 2 10 0 10 445 TRUE 1 female 0
## sum Total, N 10 9 19 wme TRUE 1 male 0.75
## 7 TRUE 2 female 0.5
One can also obtain the table of frequencies by ## 8 TRUE 2 male 0
choosing arg type values { 2, 3, 4} as shown below: ## sum Total, p Total, p Total, p 0.562
## d:B Total, p
ltable: :table_f(sdata, "a,c", ## 1 0 0
2, 3) ## 2 0.333 1
## 3 0.667 1
## a c:female c:male Total, p w4 0 0
## 1 FALSE  0.667 0.333 1 ##5 0 0
## 2 TRUE 0.4 0.6 1 #6 0.2 1
## sum Total, p  0.534 0.466 1 WT 0.5 1
## 8 0 0
ltable: :table_f(sdata, "a,c", ## sum 0.438 1
3, 2)
arg value extended=TRUE adds margins of counts,
applied only for proportions and frequencies, value
i a c:female c:male Total, p is FALSE by default. In last two examples op-
## 1 FALSE 0.6 0.33 0.47 tions(width) was used to accommodate tables:
## 2 TRUE 0.4 0.67 0.53
## sum Total, p 1 1 1 options( 40)
ltable: :table_f(sdata, "b,c,a,d", 2,
ltable: :table_f(sdata, "a,c", 3 TRUE)
4, 3)
## b c a d:A
## a c:female c:male Total, p a1 1 female FALSE 0
## 1 FALSE 0.316 0.158 0.474 44 9 1 female TRUE 0
## 2 TRUE 0.211 0.316 0.527 4 3 1 male FALSE 0.667
## sum Total, p 0.527 0.474 1.001 41 4 1 nale TRUE  0.75
## 5 2 female FALSE 0.333
One can include number of fields (variables): ## 6 9 female TRUE 0.5
#i#t 7 2 male FALSE 0
EEEERS 40) ## 8 2 male TRUE 0
.. n "
Teelblas stelbilafizdate, fo. b, .d", ## sum Total, p Total, p Total, p 0.562
2, 3)

##

Total, N Total, N Total, N



#i# d:B Total, p Total, N
##H 1 0 0 0
## 2 0 0 0
## 3 0.333 1 3
## 4 0.25 1 4
## 5 0.667 1 6
## 6 0.5 1 4
#H T 0 0 0
## 8 0 0 0
## sum 0.438 1 17
#i# 8 17 17

Transporting table into documents

One can paste table into clipboard by using arg
cb=TRUE. To insert table into Word document
one should first open Excel, choose left high cor-
ner of placement by mouse click and use copy
and paste key combinations or click on the Copy
and Paste icons (the clipboard), then open Word
document, use Copy icon to place the table.
table_ f(sdata, 7a,c”, type = 2, digits = 3, cb =
TRUE)

Use knitr::kable() to import table to other available

formats through .Rmd or other engines:
t < —table_f(sdata, "a,c”, type =2, digits = 3)

knitr :: kable(t)

a c:female c:male Total, p
1 FALSE  0.667 0.333 1
2 TRUE 0.4 0.6 1
sum Total, p 0.534 0.466 1

Transforming table into accept-

able for modelling data.frame.

Use function tableToData():
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tableToData( tname, numerictype =
77 orderedtype ="7)

Example:
data(sdata, "ltable")

stab<-ltable::table_f(sdata, "a,b,c'")

sdat<-1ltable::tableToData(stab,

",
"a,c")

sdat

## ab c Counts

## 1 FALSE 1 female 0

## 2 FALSE 2 female 6

## 3 TRUE 1 female 0

## 4 TRUE 2 female 4

## 5 FALSE 1 male 3

## 6 FALSE 2 male 0

## 7 TRUE 1 male 5

## 8 TRUE 2 male 0

lapply (sdat,class)

## $a

## [1] "ordered" "factor"
##

## $b

## [1] "numeric"

##

## $c

## [1] "ordered" "factor"
##

## $Counts

## [1] "numeric"

Arg tname is the name of table created by func-
tion table_f{). In both next args numerictype and
orderedtype variable names separated by comma
to be transformed to numeric or ordered factor
classes. Variable “Counts” shouldn’t be listed in

both.



LOG-LINEAR MODELING

Log-linear modeling

Use function PowerPoisson():

data,
ef fect,

Power Poisson(formula, scale_min =

1, scale_maxr = 5, p_alpha =

0.05, contrasts = NULL)

Log-linear analysis features some advantages
against glm{stats}, first of all due to stability of
GSL IWLS algorithms that insures distinctly less
biased covariances estimates, the pivot issue for
implemented power analysis. In some instances
hypothesis testing of higher order effects disagrees
with that of g/m on account of larger GSL estimated
errors. Another though related enhancement is
distinct better fit assessed by sum of squared dif-

ferences between observed and expected counts.
Example

Let’s begin with historical example of log-linear
modeling with Tromboembolism Data. This case-
control data first considered by Worcester, J. (1971).
The data ylijk] cross-classify thromboembolism
and control patients (i=]1 and 2 respectively) by
two risk factors: oral contraceptive user (j =l for
user, | = 2 for non-user) and smoking (k=1 for
smokers, k =2 for non-smokers). Test quantifies
boosting effect of contraceptive on odds of throm-
boembolism using log-linear analysis. Reproduced
grouped data frame with 8 rows of factors’ levels
combinations is given below. Factors are: smok-
ing status (Yes, No), contraceptive usage (Yes, No),
thromboembolism status (Trombol, Control).

data(tdata, "ltable")

tdata

smoker contraceptive  tromb Counts

1 Yes Yes Trombol 14
2 Yes Yes Control 2
3 Yes No Trombol 7
4 Yes No Control 22

5
5 No Yes Trombol 12
6 No Yes Control 8
7 No No Trombol 25
8 No No Control 84

Data has been used in subsequent model choice
studies, such as Spiegelhalter and Smith (1982), Pet-
tit and Young (1990), Congdon (2005).

Under the potentially informative priors used, the
Bayes factor estimate was By = 23.8, quite strongly
in favour of the smaller model with single inter-
action effect contraceptive*tbhromboembolism that
was opted for consideration in example. The fact
that the reduced model gives a close fit implies
that the use of oral contraceptives indeed instigates
the odds of thromboembolism, effect significancy
supported by classical and MCMC based log-linear
estimates. Further inclusion of third order interac-
tion indicated that the use of oral contraceptives
particularly among those who smoke, is a risk for
thromboembolism, but for smokers who do not

take the pill there is no excess risk.

Let’s check hypothesis by glm{stats} function:

res<-glm(Counts~ smoker +contraceptive +

tromb + contraceptivextromb,

"poisson",
tdata)
Then  compare  output  with  that  of

Power Poisson{ltable} function:

pres<-ltable: :PowerPoisson(Counts”
smoker +contraceptive +tromb +
contraceptive*tromb,
"contraceptivextromb",
1.5, tdata)

Results of both log-linear modelings are given be-

low.



Results of glm {stats} modeling

options( 80)

summary (res) $coefficients

Estimate Std. Error

(Intercept) 4.364196
smokerYes -1.053150
contraceptiveYes -2.360854
trombTrombol -1.197703

contraceptiveYes:trombTrombol 2.153215

0.1069522
0.1731305
0.3308080
0.2017027
0.4232558

z value
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Pr(>lzl)

40.805108 0.000000e+00
-6.082984 1.179660e-09
-7.136628 9.564814e-13
-5.937964 2.885828e-09
5.087265 3.632639e-07

With the help of external calculus facilitated by function condition_number() {GpGp}:

Jacobian reciprocal condition number = 0.179
chisq/dof = 56.14

Results of PowerPoisson {Itable} modeling

1.06e-01 4.18e+01
1.90e-01 6.97e+00
1.44e-01 1.63e+01
1.88e-01 6.41e+00
5.44e-01 3.09e+00

options( 80)
ltable: :print(pres, "model")
Coefficients:
Estimate Std.Error |z-scorel|
(Intercept) 4.43e+00
smokerYes -1.32e+00
contraceptiveYes -2.35e+00
trombTrombol -1.20e+00
contraceptiveYes:trombTrombol 1.68e+00
Model fit:

Weighted nonlinear least-squares fitting
Method|Solver: Levenberg-Marquardt
Algorithm: trust region

initial [£(x)| = 17.95263

final [£(x)| = 0.9301596

Jacobian reciprocal condition number =
number of iterations = 10

reason for stopping: small step size
chisq/dof = 0.288399

status: success

11.12248

Pr(>|z])
0.0e+00
3.1e-12
8.2e-60
1.5e-10
2.0e-03



POWER ANALYSIS

The print {itable} also conveys info:

Jacobian reciprocal condition number mea-
sures the inverse sensitivity of the solution to
small perturbations in the input data. It tends
to zero as J tends to singularity indicating so-

lution instability.”)

The value of ch-squared per degree of freedom
(chisq/dof) approximately 1 indicates a good
fit.) If chisq/dof » 1 the error estimates ob-
tained from the covariance matrix will be too
small and should be multiplied by square root
of chisq/dof .

Poor fit will result from the use of an inappro-
priate model, and the scaled error estimates
may then be outside the range of validity for
Gaussian errors.

BEWARE: Poor fit jeopardizes the validity of

power analysis.

Juxtaposing two results we have the same conclu-
sion on effects, specifically on hypothesized sec-
ond order interaction term contraceptive*tromb,
though differences are conspicuous on a part of er-
ror terms, higher order effect in particular. Check-
ing with other data sets the regularity holds, that
is higher order effects estimates feature larger er-
rors against glm {stats} counterparts. GLS esti-
mates are more reliable given much better condi-
tion of parameters covariance matrix. Given exam-
ple just follows the suit: Jacobian reciprocal condi-
tion number in glm {stats} is alarming while keep-
ing good property in GSL IWLS algorithms. The
same rests with chisq/dof statistic. Repercussion

on power analysis is about to be demonstrated.

Power analysis

Outlines of offered power study methodology can
be found in ISDSA? paper.

Use function PowerPoisson():

PowerPoisson(formula, data, scale_min =
1, scale_max = 5, effect, p_alpha =
0.05, contrasts = NULL)

formula

* Incorporation of formula based approach fa-
cilitates extracting true influence of hypothe-
sized effect by catching other intermingled in-
fluences. It’s up to investigator’s acumen and
experience in process under study to delineate
and separate hypothesized effect by appropri-
ate data collection design and model formula-

tion.

 The issue resolved is contrasts that constitute
effect. Mostly investigator is interested in con-
trasts rather than effect. Say, if one proceeds
with clinical trial to test medicines A, B, C, D
its A (new drug) against traditional set that
usually implied. If the optimal dosage is under
consideration, they are contrasts that help out
(average against min, max; max against others,

etc.).

scale_min, scale_max

Indicate the range of sample sizes. scale_min is the
smallest number of sample size scale range, | sig-
nifies the given data sample size (observed total
counts). scale_max is maximal sample size consid-
ered in power analysis. 5 by default means 5 times
observed counts. The inspected sample size range
defined by scale_min - scale_max automatically is

divided into 1l consecutive values investigated by

2https://meeting.isdsa.org/index.php/isdsa/2019/paper/
viewPaper/3
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function. Given the results one can change sample
size range, for example to scrutinize some partic-

ular interval to ensure power and p-value.

effect

Represents quoted effect tested by hypothesis; it
should be one from the model formula, of sec-
ond or higher order, introduced by * delimiter, i.e.,

“yrxT) Cylty 2 k1t x27) “ylty 27 etc.
p_alpha

Serves to signify Z to check simulated z-scores

against in power analysis, 0.05 by default.
contrasts

Serves to choose types of contrasts to study ef-
fects of factors, the same with glm {stats}, or-

thogonal polynomials by default.
Example

Let’s begin with Tromboembolism Data.

40)

pres<-ltable: :PowerPoisson(Counts”

options(

smoker +contraceptive +tromb +
contraceptive*tromb,

"contraceptivextromb",

1.5, tdata)
ltable: :print(pres, "power")
Test statistic Z: Quantiles
Sample size: Q0.025 QO0.05 Q0.5
174 1.463 1.548 3.196
183 1.569 1.634 3.277
191 1.321 1.903 3.308
200 1.773 1.849 3.421
209 1.801 1.974 3.463
218 1.938 2.184 3.707
226 2.057 2.315 3.888
235 2.186 2.501 3.783
244 2.457 2.682 4.113
252 2.087 2.589 4.326
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261 2.508 2.831 4.193
Power: Quantiles

Sample size: Q0.025 Q0.05 Q0.5
174 0.86 0.86 0.92
183 0.86 0.88 0.94
191 0.89 0.90 0.96
200 0.92 0.92 0.96
209 0.91 0.94 0.98
218 0.94 0.94 0.98
226 0.95 0.96 1.00
235 0.96 0.96 1.00
244 0.96 0.98 1.00
252 0.98 0.98 1.00
261 0.98 0.98 1.00

This is a short print. Real print also lists quan-
tiles QO.1, Q0.2, Q0.3, Q0.4. What we can de-
duce from the result is that 235 total counts is
enough to secure alpha and beta errors. | sug-
gest the most secure Q0.025 quantile to weight
decision on. So 235 secures Z=1.96 and power 0.9
given Q0.025 estimates. Results of power analy-
sis backed up with MCMC delivered approach, see
Ocheredko O.M. MCMC Bootstrap Based Approach

to Power and Sample Size Evaluation.?.

Discussion
The
tiveYes'trombTrombol effect tested to be sig-
nificant.

log-linear  estimates  of  contracep-
Is it not strong enough evidence of
association? Why should we collect almost 1.5-fold
as many data? The answer of course is related
to the specifics of the sample. The basic design
itself is a sample, not status quo that represents
true frequencies ratios in population. Therefore,
we have to secure that the sample data brings
in enough information to overpower sample
specifics. Of course, the more complex design is
the larger sample variation has to be outbalanced

by signal, the larger sample size is required.

Shttps://www.amazon.com/gp/product/1946728039/
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The original data is one of the random snapshots of reality and we have to put as much credit as
sensible to it. Not all snapshots of size 174 guarantee a 95% CI with zero excluded. Under MCMC
approach it was indicated that the sample size of 260 affords enough power to assure the significance

of the association in practically all samples. The same logic is behind any application of power analysis.

The other lay belief is that with the increase of sample size any association is doomed to be significant.
For sure, it is not, and the strength of power analysis is to determine the optimal sample size of
hypothesis testing. The power analysis assures that given Ho is true there is no prospect of decisive
augmentation of power and significance following the increase in sample size that will shortly be

demonstrated. Before turning to another example the graphic output produced by function plot {ltable}

is paneled:
ltable::plot(pres, 1)
Effect: contraceptiveYes:trombTrombol
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ltable::plot(pres, 2)
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ltable: :plot(pres, 3)
Effect: contraceptiveYes:trombTrombol
Z-score power
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Example
This is example of no observed association
data(iris)
iriscut<-with(iris, data.frame( cut (Petal.Length,3),
cut (Petal.Width,3)))
irist<-ltable::table_f(iriscut,"PL,PW")
irisd<-ltable::tableToData(irist, "PL,PW")
irisres<-1ltable: :PowerPoisson(Counts~PW+PL+PW*PL, "PWxPL", irisd)
ltable::plot(irisres, 3)
Effect: PW.L:PL.L
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Effect: PW.Q:PL.Q

z-score power
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What do we make of it?

1. There is no chance to observe significant association by accumulating data if used tabulated design
reproduces natural frequencies that indicate no natural relationship.

2. There is no increase in both significance and power with sample size growth given Ho is true.

3. Power and significance may behave differently with sample size dynamic, so that we can’t play
one against the other as classical power methodology implies. Usually one is less responsive than

another and it is former that defines necessary data load.

Explaining differences

Implemented is classical IWLS approach based upon minimization of squared differences between ob-
served (p) and expected () proportions. Observed proportions are transformed into response functions
of proportions, usually denoted by F(p), to accommodate logarithmic link and dimension reduction.
Weighting is done with asymptotic covariance matrix of F(p), analytically derived by delta method
from covariance matrix of observed proportions. For analytical details see for example Agresti, Alan.
Categorical Data Analysis, 3rd Edition. Chapter 16.74. Resulting is usually well conditioned parameters
covariance matrix. Apparently, gls{stat} uses different approach, subsumed into minimum chi-squared
estimators. | checked tromboembolism data with modified chi-square minimization approach using GSL.
Model estimation is given below and coincides with gls{stat} output perfectly:

“https://www.wiley.com/en-gb/Categorical+Data+Analysis%2C+3rd+Edition- p- 9780470463635
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Model estimation with modified chi-square minimization approach using GSL

Coefhcients: Estimate Std.Error |z-scorel Pr(>lzl)
(Intercept) 436e+00  10O7e-01  4.08e+01 0.0e+00
smokerYes -1.05e+00 1.73e-01  6.08e+00 1.2e-09
contraceptiveYes  -2.36e+00  3.3le-0O1  7.14e+00 9.6e-13
trombTrombol -1.20e+00  2.02e-01  5.94e+00  2.9¢-09
contraceptiveYes:

trombTrombol 2.15e+00  4.23e-01 5.09e+00  3.6e-07

Model fit:

Weighted nonlinear least-squares fitting

initial deviance = 166.4391

final deviance = 1113575

Jacobian reciprocal condition number = 0.1791111
number of iterations = 5

reason for stopping: converged

chisq/dof = 56.14586

fitted value on the boundary: FALSE

Model fit estimates coincide with those made externally. Neyman (1949) ° introduced modified chi-square

minimization estimators. He noted that minimum modified chi-square estimates result from minimizing

(pi *Wi)Q play
27‘ + E )\jgj(wl,...,ﬂ'N)
Di =

=1

with constraint equations g; of the form:
logmij — logmi j+1 — logmit1,j + logmit j+1 =0

with respect to m, where \; are Lagrange multipliers. When the constraint equations are linear in ,
the resulting estimating equations are linear. Then Bhapkar (1996) ¢ showed that these estimators are
identical to WLS estimators. Usually, however, constraint equations are nonlinear in m, such as for
independence model. Given our interest in interaction effects (in particular issue for power analysis)
estimates generally should not coincide advocating for IWLS.

Finally, function MCMCglmm{MCMCglmm} is used arbitrary on tromboembolism data. MCMC has
numerous advantages over classical estimators YET required sophisticated users to tune in. Let’s look

at the MCMC estimates, in particular at interaction effect, which significance is close to produced by

SNeyman, J. 1949. Contributions to the theory of the chi-squared test. In the Proceedings First Berkeley Symposium on
Mathematical Statistics and Probability, ed. J. Neyman. Berkeley, CA: University of California Press, pp. 239-273.

%Bhapkar, V.P. 1996. A note on the equivalence of two test criteria for hypotheses in categorical data. J.Am.Stat.Assoc. 6l:
228-235.
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PowerPoisson{ltable} yet even less significant and far from that of glm{stats}. Another culprit is

variable estimates, p values in particular, due to different run-to-run chains.

data(tdata, "ltable")
require (MCMCglmm)
options( 8 80)

mcmcres<-MCMCglmm(Counts”~smoker +contraceptive +tromb + contraceptive*tromb,
"poisson', tdata, FALSE, TRUE)

summary (mcmcres) $solutions

post.mean 1-95% CI u-95% CI eff.samp pMCMC

(Intercept) 4.244 3.002 5.0732 680 0.004
smokerYes -0.961 -1.843 0.0429 764 0.056
contraceptiveYes -2.356 -3.891 -1.1846 420 0.008
trombTrombol -1.160 -2.401 0.2177 1000 0.070
contraceptiveYes:trombTrombol 2.215 0.647 4.4134 454 0.034

Bearing on power analysis

Let's conduct power analysis with glm{stats} estimates. | used glm directly for a purpose and built
package RPower just to illustrate a point. RPower uses the same syntaxes with /table function Pow-
erPoisson, but has additional logical arg correction. Value FALSE manages to conduct power analysis
without modification, while value TRUE assures modification of error terms by multiplication by square
root of chisq/dof.

require (RPower)
trombglm<-PowerPoissonGLM(Counts~smoker +contraceptive +tromb +
contraceptive*tromb, 1.5,
"contraceptivextromb",
tdata, FALSE)
plot (trombglm, 3)



BEARING ON POWER ANALYSIS

Effect: contraceptiveYes:trombTrombol
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trombglmcl.8<-PowerPoissonGLM(Counts~smoker +contraceptive +tromb +

contraceptive*tromb, 1.8,
"contraceptivextromb",
tdata, TRUE)
plot (trombglmcl.8, 3)
Effect: contraceptiveYes:trombTrombol
z-score power

o

-
©

©
w0 =]
<

©

o
™

=

o
N
- —— median N ~ 7. — median

01 quantile ° - - - 0.2 quantile
0.05 quantile .- " - 0.05 quantile
o
180 200 220 240 260 280 300 180 200 220 240 260 280 300
sample size sample size

The invalidity of glm{stats} estimates based power analysis is apparent. It is tremendously biased
toward small sample sizes solutions. On the other hand, corrected error terms procure too large

sample sizes solutions. Both solutions are biased to extremes.
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In the light of findings I checked validity of power
solutions suggested by other R packages, pwr and
ImSupport, namely functions puwr.f2.test{pwr}
and model Power{lmSupport}.

glmres<-glm(Counts~smoker +contraceptive +

tromb + contraceptivextromb,

"poisson", tdata)
an<-anova(glmres)
an[2]

Deviance
NULL
smoker 42.3
contraceptive 63.8
tromb 19.7
contraceptive:tromb 29.5

require (1lmSupport)
modelEffectSizes (glmres)

glm(formula = Counts
tromb, family = "poisson", data = tdata)
Coefficients
SSR df pEta-sqr dR-sqr
smoker 42.3 1 0.792 NA
contraceptive 92.7 1 0.893 0.0192
tromb 41.8 1 0.790 0.0086

Sum of squared errors (SSE): 11.1
Sum of squared total (SST): 4837.5
modelPower (pc=4, 5,

0.7)

174, 0.05,

Results from Power Analysis

pEta2 = 0.700
pa = 5
pc = 4

PACKAGE LTABLE 2.0

alpha = 0.050
N = 174.000
power = 1.000

ANOVA is used to check the lower bound of con-
traceptivetromb effect that is of effect tromb. As
function model E f fectSizes{lmSupport} omits in-
teractions effects from consideration, to be on the
safe side I put 0.7 as value of partial effect size
(pEta-sqr) of effect tromb. pc is number of param-
eters in the model, i.e., intercept + all parameters
excluding the effect of interest. This is the numer-
ator df of the F test for the effect. pa is the same
but with the effect of interest included. As con-
traceptive™tromb effect is not compound of several
contrasts but of one, the difference is 1. I checked
the power for original sample size of 174.

Result follows the biased to small samples pattern,
indicating power of 1.0.

~ smoker + contraceptive + tromb + contraceptive *

BE ON THE SAFE SIDE
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