estimate,NHPP-method {BaPreStoPro} | R Documentation |
Bayesian estimation of a non-homogeneous Poisson process (NHPP) with cumulative intensity function Λ(t, ξ).
## S4 method for signature 'NHPP' estimate(model.class, t, data, nMCMC, propSd, adapt = TRUE, proposal = c("normal", "lognormal"))
model.class |
class of the NHPP model including all required information, see |
t |
vector of time points |
data |
vector of observation variables |
nMCMC |
length of Markov chain |
propSd |
vector of proposal variances for ξ |
adapt |
if TRUE (default), proposal variance is adapted |
proposal |
proposal density: "normal" (default) or "lognormal" (for positive parameters) |
Hermann, S., K. Ickstadt and C. H. Mueller (2015). Bayesian Prediction for a Jump Diffusion Process with Application to Crack Growth in Fatigue Experiments. SFB 823 discussion paper 30/15.
model <- set.to.class("NHPP", parameter = list(xi = c(5, 1/2)), Lambda = function(t, xi) (t/xi[2])^xi[1]) t <- seq(0, 1, by = 0.01) data <- simulate(model, t = t, plot.series = TRUE) est <- estimate(model, t, data$Times, 10000, proposal = "lognormal") plot(est) ## model <- set.to.class("NHPP", parameter = list(xi = 5), Lambda = function(t, xi) t*xi) t <- seq(0, 1, by = 0.01) data <- simulate(model, t = t, plot.series = TRUE) est <- estimate(model, t, data$N, 10000) plot(est, par.options = list(mfrow = c(1,1)))