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Introduction

This documents gives some instructions on how to create graphical representations of a correlation matrix
in the statistical environment R with package Correlplot, using a variety of different statistical methods
(Graffelman and De Leeuw (2022)). We use principal component analysis (PCA), multidimensional scaling
(MDS), principal factor analysis (PFA), weighted alternating least squares (WALS), correlograms (CRG) and
corrgrams to produce displays of correlation structure. The next section shows how to use the functions of
the package in order to create the different graphical representations. The computation of goodness-of-fit
statistics is also addressed. All methods are illustrated on a single data set, the wheat kernel data introduced
below.

Graphical representations of a correlation matrix

We first load some packages we will use:

library(calibrate)

library(corrplot)

library(Correlplot)

Throughout this vignette, we will use the wheat kernel data set taken from the UCI Machine Learning
Repository (https://archive.ics.uci.edu/ml/datasets/seeds) in order to illustrate the different plots. The
wheat kernel data (Charytanowicz et al. (2010)) consists of 210 wheat kernels, of which the variables area

(A), perimeter (P ), compactness (C = 4 ∗ π ∗ A/P 2), length, width, asymmetry coefficient and groove (length
of kernel groove) were registered. There are 70 kernels of each of three varieties Kama, Rosa and Canadian;
here we will only use the kernels of variety Kama. The data is made available with:

data("Kernels")

X <- Kernels[Kernels$variety==1,]

X <- X[,-8]

head(X)

#> area perimeter compactness length width asymmetry groove

#> 1 15.26 14.84 0.8710 5.763 3.312 2.221 5.220

#> 2 14.88 14.57 0.8811 5.554 3.333 1.018 4.956

#> 3 14.29 14.09 0.9050 5.291 3.337 2.699 4.825

#> 4 13.84 13.94 0.8955 5.324 3.379 2.259 4.805

#> 5 16.14 14.99 0.9034 5.658 3.562 1.355 5.175

#> 6 14.38 14.21 0.8951 5.386 3.312 2.462 4.956

The correlation matrix of the variables is given by:

R <- cor(X)

round(R,digits=3)

#> area perimeter compactness length width asymmetry groove

#> area 1.000 0.976 0.371 0.835 0.900 -0.050 0.721
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#> perimeter 0.976 1.000 0.165 0.921 0.802 -0.054 0.794

#> compactness 0.371 0.165 1.000 -0.146 0.667 0.037 -0.131

#> length 0.835 0.921 -0.146 1.000 0.551 -0.037 0.866

#> width 0.900 0.802 0.667 0.551 1.000 -0.027 0.447

#> asymmetry -0.050 -0.054 0.037 -0.037 -0.027 1.000 -0.011

#> groove 0.721 0.794 -0.131 0.866 0.447 -0.011 1.000

1. The corrgram

The corrgram (Friendly (2002)) is a tabular display of the entries of a correlation matrix that uses colour and
shading to represent correlations. Corrgrams can be made with the fuction corrplot

corrplot(R, method="circle",type="lower")
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Figure 1: A corrgram of the wheat kernel data.

This shows most correlations are positive, and correlations with asymmetry are weak.

2. The correlogram

The correlogram (Trosset (2005)) represents correlations by the cosines between vectors.

theta.cos <- correlogram(R,xlim=c(-1.1,1.1),ylim=c(-1.1,1.1),main="CRG")
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Figure 2: The correlogram of the wheat kernel data.
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The vector theta.cos contains the angles (in radians) of each variable with respect to the positive x-axis.
The approximation provided by these angles to the correlation matrix is calculated by

Rhat.cor <- angleToR(theta.cos)

The correlogram always perfectly represents the correlations of the variables with themselves, and these have
a structural contribution of zero to the loss function. We calculate the root mean squared error (RMSE)
of the approximation by using function rmse. We include the diagonal in the RMSE calculation by setting
omit.diagonal to FALSE.

rmse.crg <- rmse(R,Rhat.cor,omit.diagonal=FALSE)

rmse.crg

#> [1] 0.2437535

This gives and RMSE of 0.2438, which shows this representation has a large amount of error. The correlogram
can be modified by using a linear interpretation rule, rendering correlations linear in the angle (Graffelman
(2013)). This representation is obtained by:

theta.lin <- correlogram(R,ifun="lincos",labs=colnames(R),xlim=c(-1.1,1.1),

ylim=c(-1.1,1.1),main="CRG")
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Figure 3: Linear correlogram of the wheat kernel data.

The approximation to the correlation matrix by using this linear interpretation function is calculated by

Rhat.corlin <- angleToR(theta.lin,ifun="lincos")

rmse.lin <- rmse(R,Rhat.corlin,omit.diagonal=FALSE)

rmse.lin

#> [1] 0.1667556

and this gives a RMSE of 0.1668. In this case, the linear representation is seen to improve the approximation.
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3. The PCA biplot of the correlation matrix

We create a PCA biplot of the correlation matrix, doing the calculations for a PCA by hand, using the
singular value decomposition of the (scaled) standardized data. Alternatively, standard R function princomp

may be used to obtain the coordinates needed for the correlation biplot. We use function bplot from package
calibrate to make the biplot:

n <- nrow(X)

Xt <- scale(X)/sqrt(n-1)

res.svd <- svd(Xt)

Fs <- sqrt(n)*res.svd$u # standardized principal components

Gp <- res.svd$v%*%diag(res.svd$d) # biplot coordinates for variables

bplot(Fs,Gp,colch=NA,collab=colnames(X),xlab="PC1",ylab="PC2",main="PCA")
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Figure 4: PCA biplot of the wheat kernel data.

The joint representation of kernels and variables emphasizes this is a biplot of the (standardized) data matrix.
However, this plot is a double biplot because scalar products between variable vectors approximate the
correlation matrix. We stress this by plotting the variable vectors only, and adding a unit circle:

bplot(Gp,Gp,colch=NA,rowch=NA,collab=colnames(X),xl=c(-1,1),

yl=c(-1,1),main="PCA")

circle()
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Figure 5: PCA biplot of the correlation matrix.
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The PCA biplot of the correlation matrix can be obtained from a correlation-based PCA or also directly
from the spectral decomposition of the correlation matrix. The rank two approximation, obtained by means
of scalar products between vectors, is calculated by:

Rhat.pca <- Gp[,1:2]%*%t(Gp[,1:2])

In principle, PCA also tries to approximate the ones on the diagonal of the correlation matrix. These are
included in the RMSE calculation by setting omit.diagonal to FALSE.

rmse.pca <- rmse(R,Rhat.pca,omit.diagonal=FALSE)

rmse.pca

#> [1] 0.145959

This gives a RMSE of 0.1460, which is an improvement over the previous correlograms. Function rmse can
also be used to calculate the RMSE of each variable separately:

rmse(R,Rhat.pca,omit.diagonal=FALSE,per.variable=TRUE)

#> area peri comp leng widt asym groo

#> 0.01403868 0.02158021 0.03255115 0.02480187 0.02151041 0.37610214 0.06982317

This shows that asymmetry has the worst fit.

4. The MDS map of a correlation matrix

We transform correlations to distances with the
�

2(1 − r) transformation, and use the cmdscale function
from the stats package to perform metric multidimensional scaling. We mark negative correlations with a
dashed red line.

Di <- sqrt(2*(1-R))

out.mds <- cmdscale(Di,eig = TRUE)

Fp <- out.mds$points

opar <- par(bty = "l")

plot(Fp[,1],Fp[,2],asp=1,xlab="First principal axis",

ylab="Second principal axis",main="MDS")

textxy(Fp[,1],Fp[,2],colnames(R),cex=0.75)

par(opar)

ii <- which(R < 0,arr.ind = TRUE)

for(i in 1:nrow(ii)) {

segments(Fp[ii[i,1],1],Fp[ii[i,1],2],

Fp[ii[i,2],1],Fp[ii[i,2],2],col="red",lty="dashed")

}

We calculate distances in the map, convert these back to correlations:

Dest <- as.matrix(dist(Fp[,1:2]))

Rhat.mds <- 1-0.5*Dest*Dest

Again, correlations of the variables with themselves are perfectly approximated (zero distance), and we
include these in the RMSE calculations:

rmse.mds <- rmse(R,Rhat.mds,omit.diagonal=FALSE)

rmse.mds

#> [1] 0.06837469

5. The PFA biplot of a correlation matrix

Principal factor analysis can be performed by the function pfa of package Correlplot. We extract the factor
loadings.

7



−0.5 0.0 0.5

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

MDS

First principal axis

S
e
c
o
n
d
 p

ri
n
c
ip

a
l 
a
x
is

asym

comp

widt

leng

groo

area

peri

Figure 6: MDS map of the correlation matrix of the wheat kernel data.
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out.pfa <- Correlplot::pfa(X,verbose=FALSE)

L <- out.pfa$La

The biplot of the correlation matrix obtained by PFA is in fact the same as what is known as a factor loading
plot in factor analysis, to which a unit circle can be added. The approximation to the correlation matrix and
its RMSE are calculated as:

Rhat.pfa <- L[,1:2]%*%t(L[,1:2])

rmse.pfa <- rmse(R,Rhat.pfa)

rmse.pfa

#> [1] 0.01119688

In this case, the diagonal is excluded, for PFA explicitly avoids fitting the diagonal. To make the factor
loading plot, aka PFA biplot of the correlation matrix:

bplot(L,L,pch=NA,xl=c(-1,1),yl=c(-1,1),

xlab="Factor 1",ylab="Factor 2",main="PFA",rowch=NA,

colch=NA)

circle()
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Figure 7: PFA biplot of the correlation matrix of the wheat kernel data.

The RMSE of the plot obtained by PFA is 0.0112, lower than the RMSE obtained by PCA. Note that variable
area reaches the unit circle for having a communality of 1, or, equivalently, specificity 0, i.e. PFA produces
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what is known as a Heywood case in factor analysis. The specificities are given by:

diag(out.pfa$Psi)

#> area peri comp leng widt asym groo

#> 0.000000000 0.011494664 0.158097108 0.007885055 0.022509545 0.997799829 0.258768379

6. The WALS biplot of a correlation matrix

The correlation matrix can also be factored using weighted alternating least squares, avoiding the fit of the
ones on the diagonal of the correlation matrix by assigning them weight 0, using function ipSymLS (De Leeuw
(2006)).

W <- matrix(1,nrow(R),nrow(R))

diag(W) <- 0

Fp.als <- ipSymLS(R,w=W,eps=1e-15)

bplot(Fp.als,Fp.als,rowch=NA,colch=NA,collab=colnames(R),

xl=c(-1.1,1.1),yl=c(-1.1,1.1),main="WALS")

circle()
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Figure 8: WALS biplot of the correlation matrix of the wheat kernel data.

Weighted alternating least squares has, in contrast to PFA, no restriction on the vector length. If the vector
lengths in the biplot are calculated, then variable area is seen to just move out of the unit circle.

Rhat.wals <- Fp.als%*%t(Fp.als)

sqrt(diag(Rhat.wals))
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#> [1] 1.00124368 0.99394213 0.91345321 0.99646265 0.99026217 0.04686397 0.86124152

rmse.als <- rmse(R,Rhat.wals)

rmse.als

#> [1] 0.01118619

The RMSE of the approximation obtained by WALS is 0.011186, slightly below the RMSE of PFA. The
WALS low rank approximation to the correlation matrix can also be obtained by the more generic function
wAddPCA, which allows for non-symmetric matrices and adjustments (see the next section). In order to get
uniquely defined biplot vectors for each variable, corresponding to symmetric input, an eigendecomposition is
applied to the fitted correlation matrix.

p <- nrow(R)

W <- matrix(1,p,p)

diag(W) <- 0

out.wals <- wAddPCA(R, W, add = "nul", verboseout = FALSE, epsout = 1e-10)

Rhat.wals <- out.wals$a%*%t(out.wals$b)

out.eig <- eigen(Rhat.wals)

Fp.adj <- out.eig$vectors[,1:2]%*%diag(sqrt(out.eig$values[1:2]))

rmse.als <- rmse(R,Rhat.wals)

rmse.als

#> [1] 0.01118619

7. The WALS biplot using an adjustment of the correlation matrix

A scalar adjustment can be employed to improve the approximation of the correlation matrix, and the
adjusted correlation matrix is factored for a biplot representation. That means we seek the factorization

Ra = R − δJ = GG′,

where both δ and G are chosen such that the (weighted) residual sum of squares is minimal. This problem is
solved by using function wAddPCA.

p <- nrow(R)

W <- matrix(1,p,p)

diag(W) <- 0

out.wals <- wAddPCA(R, W, add = "one", verboseout = FALSE, epsout = 1e-10)

delta <- out.wals$delta[1,1]

Rhat <- out.wals$a%*%t(out.wals$b)

out.eig <- eigen(Rhat)

Fp.adj <- out.eig$vectors[,1:2]%*%diag(sqrt(out.eig$values[1:2]))

The optimal adjustment δ is 0.071. The corresponding biplot is shown below.

bplot(Fp.adj,Fp.adj,rowch=NA,colch=NA,collab=colnames(R),

xl=c(-1.2,1.2),yl=c(-1.2,1.2),main="WALS adjusted")

circle()

Note that, when calculating the fitted correlation matrix, adjustment δ is added back. The fitted correlation
matrix and its RMSE are now calculated as:

Rhat.adj <- Fp.adj%*%t(Fp.adj)+delta

rmse.adj <- rmse(R,Rhat.adj)

rmse.adj

#> [1] 0.005560242

This gives RMSE 0.0056. This is smaller than the RMSE obtained by WALS without adjustment. We
summarize the values of the RMSE of all methods in a table below:
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Figure 9: WALS biplot of the correlation matrix of the wheat kernel data, with the use of an additive
adjustment.
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rmsevector <- c(rmse.crg,rmse.lin,rmse.pca,rmse.mds,rmse.pfa,rmse.als,rmse.adj)

methods <- c("CRG (cos)","CRG (lin)","PCA","MDS",

"PFA","WALS R","WALS Radj")

results <- data.frame(methods,rmsevector)

results <- results[order(rmsevector),]

results

#> methods rmsevector

#> 7 WALS Radj 0.005560242

#> 6 WALS R 0.011186190

#> 5 PFA 0.011196885

#> 4 MDS 0.068374694

#> 3 PCA 0.145959040

#> 2 CRG (lin) 0.166755585

#> 1 CRG (cos) 0.243753461

A summary of RMSE calculations for four methods (PCA and WALS, both with and without δ adjustment)
can be obtained by the functions FitRwithPCAandWALS and rmsePCAandWALS; the first applies the four
methods to the correlation matrix, and the latter calculates the RMSE statistics for the four approximations.
The bottom line of the table produced by rmsePCAandWALS gives the overall RMSE for each methods.

output <- FitRwithPCAandWALS(R,eps=1e-15)

rmsePCAandWALS(R,output)

#> PCA PCA-A WALS WALS-A

#> area 0.0140 0.0535 0.0081 0.0043

#> peri 0.0216 0.0399 0.0088 0.0064

#> comp 0.0326 0.0602 0.0110 0.0054

#> leng 0.0248 0.0467 0.0067 0.0045

#> widt 0.0215 0.0639 0.0076 0.0068

#> asym 0.3761 0.1253 0.0181 0.0049

#> groo 0.0698 0.0695 0.0135 0.0061

#> All 0.1460 0.0706 0.0112 0.0056
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