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1 Motivation

Genetic risk scores based on genotypes at multiple single nucleotide
polymorphisms (SNPs) have several applications in association studies for
complex human phenotypes. However, for many human diseases and traits
of clinical importance, identifying genetic associations has required large
sample sizes, so single SNP associations are typically studied by meta-
analysis of summary results obtained from multiple genotype-phenotype
datasets held at different institutions. In such settings, testing association
between a multi-SNP genetic risk score and a phenotype is prone to
organisational difficulties and potential for analytic error.

One application of interest is estimating the causal effect of
a chosen biomarker on a disease outcome, invoking a Mendelian
randomisation argument [LHS+08]. An investigator may have access
to information sufficient to parameterise a genetic risk score for the
biomarker, but may not have direct access to genotype data sufficient
to test association between the risk score and the disease. In this
application, it is desirable to make efficient use of single SNP meta-analysis
association statistics, calculated by research consortia using datasets with
very large total sample sizes of disease case and control subjects [e.g.
SKK+11, MVT+12].

The key quantities of interest are the effect size estimate for
association between the risk score and the disease (here denoted α̂), and
its standard error (SE). These are typically sufficient to calculate other
quantities of interest, such as the association P -value, (pseudo-)variance
explained, and the ratio estimate for the causal effect of a biomarker on
the disease.

2 Definitions

For an additive multi-SNP risk score depending on m chosen SNPs, the
value of the risk score for the i-th subject is

ri =

m∑
j=1

wjxij . (1)

Here, xij is the dose of the coded allele at the j-th SNP in the i-th subject,
and wj is a chosen coefficient or weight for the j-th SNP. The choice of
the SNPs and the vector of coefficients w together parameterise the score
and are assumed known.

Assume we wish to assess association between the risk score (1) and a
chosen phenotype in a chosen dataset, using a regression model where the
likelihood [or the partial likelihood for a Cox proportional hazards model]
of the observed phenotype data depends on explanatory variables only
through a linear predictor ηi = riα + · · · .
The key quantity of interest is α̂, an estimate for α, the coefficient for the
risk score in the linear predictor.

3 Results

3.1 “Summary statistic” method

Define
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j=1wjβ̂js
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, (2)

where β̂j is the effect size estimate when the phenotype is regressed onto

xij in a single SNP analysis in the chosen dataset, and sj = SE
(
β̂j

)
is

the corresponding SE.

3.2 Main result

When all SNP genotypes used in the risk score are uncorrelated, then

α̃ ' α̂ (3)

Trivially, under the null hypothesis that the β̂j are independently normally

distributed with means zero and variances s2
j, the quantity α̃ is normally

distributed with mean zero and variance SE(α̃)2.

3.3 Goodness of fit test

When all SNP genotypes used in the risk score are uncorrelated, then

X2
m :=

m∑
i=1

β̂2
js
−2
j and X2

rs :=

(
α̃

SE(α̃)

)2

(4)

are χ2
(m)

and χ2
(1)

distributed test statistics for association between the

phenotype and all m SNPs under an unconstrained m d.f. model, and for
the nested 1 d.f. risk score model, respectively. Then,

Qrs := X2
m −X2

rs (5)

is χ2
(m−1)

distributed, under the null hypothesis that all m SNPs are

associated with the phenotype with true effect sizes that are proportional
to the coefficients w used to parameterise the risk score. This null
hypothesis expresses a critical assumption required for a Mendelian
randomisation argument, namely that all the genetic instruments must
affect disease risk only through their effects on the biomarker of interest,
and must not have other “pleiotropic” effects on disease risk (e.g. via other
biomarkers).

3.4 Proof of main result

Here I write the proof for (3) only for the simplest case, where the chosen phenotype is a continuous trait (zi in the i-th
subject), and where there are no covariates. Then, for the j-th SNP, the regression coefficient and SE are

β̂j =
z′xj
xj′xj

sj '

√
z′z

nxj′xj
(6)

where z is the centered n× 1 vector of subject-specific trait values and xj is the centered n× 1 vector of coded allele
dosages. The approximation for sj in (6) assumes n is large and that a small fraction of the trait variance is explained.
For the risk score the regression coefficient is

α̂ =
z′r
r′r

(7)

where r is the centered n× 1 vector of subject-specific multi-SNP risk score values. The required result
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'
∑m
j=1wjz

′xj∑m
j=1w

2
jxj
′xj
'
∑m
j=1wjβ̂js

−2
j n (z′z)−1∑m

j=1w
2
js
−2
j n (z′z)−1

= α̃ (8)

has two necessary conditions: (i) that r =
∑m
j=1wjxj, which is true because the [centered] risk score (1) is a linear

combination of the [centered] coded allele dosages; and (ii) that xj
′xk ' 0 for all j 6= k, that is that the centered vectors

of coded allele dosages are orthogonal, which is true for uncorrelated SNP genotypes. �

I wrote a more general but less rigorous derivation for (3) in [DHT+12], and I have performed extensive numerical
verification of (3) using Monte Carlo subsamples of several real datasets.

4 Illustrative application

Previously, [WRS+10] reported effect size estimates for association between prevalent coronary artery disease (CAD)
and genotypes at 29 SNPs associated with serum lipid biomarkers, combining results from nine studies totalling 9 633
CAD cases and 38 684 controls. Effect size estimates for association between the biomarkers (low density lipoprotein
cholesterol (LDL), high density lipoprotein cholesterol (HDL), and triglycerides) and the genotypes were also reported,
combining results from eight studies totalling 17 723 subjects (partly overlapping the CAD case and control samples).
However, [WRS+10] did not report any results for multi-SNP risk scores.

Figure 1. Estimated effects on CAD risk are plotted against estimated effects on serum lipid biomarkers, for
ten SNPs associated with HDL (left panel) and for nine SNPs associated with triglycerides (right panel).
Vertical grey lines show 95% confidence interval (CI) for each individual SNP. Estimates of casual effect of
each biomarker on CAD risk, by applying (2) using all SNPs in each panel, are represented by red solid lines
with gradient α̃, with red dashed lines showing the 95% CI.
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Using all SNPs, multi-SNP risk score analyses identify weak but statistically significant protective causal effects of
HDL and triglycerides on CAD risk (0.87 odds (95% CI 0.82–0.93) per 10% increase in HDL, P = 6.1 × 10−5; 0.96
odds (95% CI 0.93–0.99) per 10% increase in triglycerides, P = 0.014). However, applying (5) detects strong evidence
of heterogeneity of effects on CAD risk relative to the estimated effects on either biomarker (Qrs = 48.39 on 9 d.f.,
P = 2.2× 10−7 for HDL; Qrs = 34.12 on 8 d.f., P = 3.9× 10−5 for triglycerides). Hence the 1 d.f. risk score models do
not fit these data, and the assumptions required for a Mendelian randomisation argument must be seriously questioned.

Figure 2. Stepwise removal of SNPs from the risk score, minimising Qrs at each step until there was no
significant heterogeneity (at P ≤ 0.05), removed SNPs at the APOA5-A1 and LPL loci for HDL, and removed
SNPs at the GCKR, TRIB1 and APOA5-A1 loci for triglycerides. Estimated effects on CAD risk are plotted
against estimated effect on serum lipid biomarkers for the remaining SNPs. Corresponding estimates of casual
effect of biomarker on CAD risk are represented by red lines as before.
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After removing SNPs that likely violate assumptions required for a Mendelian randomisation argument, multi-SNP risk
score analyses suggest no causal effects of either HDL or triglycerides on CAD risk, with narrow 95% CIs (0.91–1.06
odds for CAD per 10% HDL increase, P = 0.69; 0.91–1.01 odds for CAD per 10% triglyceride decrease, P = 0.11).

By constructing a genetic risk score for HDL, excluding “pleiotropic” SNPs significantly associated (at P ≤ 0.01) with
either LDL or triglycerides, [VPOM+12] used the method described here to support a related conclusion, that HDL has
no causal effect on myocardial infarction risk. An advantage of the the goodness of fit approach described here is that
SNPs with “pleiotropic” effects on disease risk can be excluded from the risk score, even when suitable markers for the
“pleiotropic” effects are not available.
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Methods described here are implemented in my gtx package for the R statistical programming language, available
at http://cran.r-project.org/web/packages/gtx


