as.matrix.classres | as.matrix method for classification results |
as.matrix.ldecomp | as.matrix method for ldecomp object |
as.matrix.plsdares | as.matrix method for PLS-DA results |
as.matrix.plsres | as.matrix method for PLS results |
as.matrix.regcoeffs | as.matrix method for regression coefficients class |
as.matrix.regres | as.matrix method for regression results |
bars | Show bars on axes |
classify.plsda | PLS-DA classification |
classres | Results of classification |
crossval | Generate sequence of indices for cross-validation |
crossval.str | String with description of cross-validation method |
erfinv | Inverse error function |
errorbars | Show error bars on a plot |
getB | Low-dimensional approximation of data matrix X |
getCalibrationData | Calibration data |
getCalibrationData.pca | Get calibration data |
getCalibrationData.simcam | Get calibration data |
getClassificationPerformance | Calculation of classification performance parameters |
getConfusionMatrix | Confusion matrix for classification results |
getConfusionMatrix.classres | Confusion matrix for classification results |
getMainTitle | Get main title |
getProbabilities | Get class belonging probability |
getProbabilities.simca | Probability of class belonging for PCA/SIMCA results |
getRegcoeffs | Get regression coefficients |
getRegcoeffs.pls | Regression coefficients for PLS model' |
getSelectedComponents | Get selected components |
getSelectedComponents.classres | Get selected components |
getSelectivityRatio | Selectivity ratio |
getSelectivityRatio.pls | Selectivity ratio for PLS model |
getVIPScores | VIP scores |
getVIPScores.pls | VIP scores for PLS model |
imshow | show image data as an image |
ipls | Variable selection with interval PLS |
ipls.backward | Runs the backward iPLS algorithm |
ipls.forward | Runs the forward iPLS algorithm |
ldecomp | Linear decomposition of data |
ldecomp.getDistances | Residuals distances for linear decomposition |
ldecomp.getVariances | Explained variance for linear decomposition |
ldecomp.plotLimits | Shows lines with critical limits on residuals plot |
mda.cbind | A wrapper for cbind() method with proper set of attributes |
mda.data2im | Convert data matrix to an image |
mda.df2mat | Convert data frame to a matrix |
mda.exclcols | Exclude/hide columns in a dataset |
mda.exclrows | Exclude/hide rows in a dataset |
mda.getattr | Get data attributes |
mda.getexclind | Get indices of excluded rows or columns |
mda.im2data | Convert image to data matrix |
mda.inclcols | Include/unhide the excluded columns |
mda.inclrows | include/unhide the excluded rows |
mda.rbind | A wrapper for rbind() method with proper set of attributes |
mda.setattr | Set data attributes |
mda.setimbg | Remove background pixels from image data |
mda.show | Wrapper for show() method |
mda.subset | A wrapper for subset() method with proper set of attributed |
mda.t | A wrapper for t() method with proper set of attributes |
mdaplot | Plotting function for a single set of objects |
mdaplot.areColors | Check color values |
mdaplot.formatValues | Format vector with numeric values |
mdaplot.getAxesLim | Calculate axes limits |
mdaplot.getColors | Color values for plot elements |
mdaplot.plotAxes | Create axes plane |
mdaplot.showColorbar | Plot colorbar |
mdaplot.showGrid | Plot grid |
mdaplot.showLabels | Plot labels Shows labels for data elements (points, bars) on a plot. |
mdaplot.showLegend | Plot legend |
mdaplot.showLines | Plot lines |
mdaplot.showRegressionLine | Regression line for data points |
mdaplotg | Plotting function for several sets of objects |
mdatools | Package for Multivariate Data Analysis (Chemometrics) |
pca | Principal Component Analysis |
pca.cal | PCA model calibration |
pca.crossval | Cross-validation of a PCA model |
pca.mvreplace | Replace missing values in data |
pca.nipals | NIPALS based PCA algorithm |
pca.run | Runs one of the selected PCA methods |
pca.svd | Singular Values Decomposition based PCA algorithm |
pcares | Results of PCA decomposition |
pellets | Image data |
people | People data |
pinv | Pseudo-inverse matrix |
plot.classres | Plot function for classification results |
plot.ipls | Overview plot for iPLS results |
plot.pca | Model overview plot for PCA |
plot.pcares | Plot method for PCA results object |
plot.pls | Model overview plot for PLS |
plot.plsda | Model overview plot for PLS-DA |
plot.plsdares | Overview plot for PLS-DA results |
plot.plsres | Overview plot for PLS results |
plot.randtest | Plot for randomization test results |
plot.regcoeffs | Regression coefficients plot |
plot.regres | plot method for regression results |
plot.simca | Model overview plot for SIMCA |
plot.simcam | Model overview plot for SIMCAM |
plot.simcamres | Model overview plot for SIMCAM results |
plotBiplot | Biplot |
plotBiplot.pca | PCA biplot |
plotCooman | Cooman's plot |
plotCooman.simcam | Cooman's plot for SIMCAM model |
plotCooman.simcamres | Cooman's plot for SIMCAM results |
plotCorr | Correlation plot |
plotCorr.randtest | Correlation plot for randomization test results |
plotCumVariance | Variance plot |
plotCumVariance.ldecomp | Cumulative explained variance plot for linear decomposition |
plotCumVariance.pca | Cumulative explained variance plot for PCA |
plotDiscriminationPower | Discrimination power plot |
plotDiscriminationPower.simcam | Discrimination power plot for SIMCAM model |
plotExtreme | Shows extreme plot for SIMCA model |
plotExtreme.simca | Shows extreme plot for SIMCA model |
plotHist | Statistic histogram |
plotHist.randtest | Histogram plot for randomization test results |
plotLoadings | Loadings plot |
plotLoadings.pca | Loadings plot for PCA |
plotMisclassified | Misclassification ratio plot |
plotMisclassified.classmodel | Misclassified ratio plot for classification model |
plotMisclassified.classres | Misclassified ratio plot for classification results |
plotModelDistance | Model distance plot |
plotModelDistance.simcam | Modelling distance plot for SIMCAM model |
plotModellingPower | Modelling power plot |
plotModellingPower.simca | Modelling power plot for SIMCA model |
plotModellingPower.simcam | Modelling power plot for SIMCAM model |
plotPerformance | Classification performance plot |
plotPerformance.classmodel | Performance plot for classification model |
plotPerformance.classres | Performance plot for classification results |
plotPredictions | Predictions plot |
plotPredictions.classmodel | Predictions plot for classification model |
plotPredictions.classres | Prediction plot for classification results |
plotPredictions.pls | Predictions plot for PLS |
plotPredictions.plsres | Predictions plot for PLS results |
plotPredictions.regres | Predictions plot for regression results |
plotProbabilities | Plot for class belonging probability |
plotProbabilities.classres | Plot for class belonging probability |
plotRegcoeffs | Regression coefficients plot |
plotRegcoeffs.pls | Regression coefficient plot for PLS |
plotResiduals | Residuals plot |
plotResiduals.ldecomp | Residuals plot for linear decomposition |
plotResiduals.pca | Residuals plot for PCA |
plotResiduals.pcares | Residuals plot for PCA results |
plotResiduals.simcam | Residuals plot for SIMCAM model |
plotResiduals.simcamres | Residuals plot for SIMCAM results |
plotResiduals.simcares | Residuals plot for SIMCA results |
plotRMSE | RMSE plot |
plotRMSE.ipls | RMSE development plot |
plotRMSE.pls | RMSE plot for PLS |
plotRMSE.regres | RMSE plot for regression results |
plotScores | Scores plot |
plotScores.ldecomp | Scores plot for linear decomposition |
plotScores.pca | Scores plot for PCA |
plotSelection | Selected intervals plot |
plotSelection.ipls | iPLS performance plot |
plotSelectivityRatio | Selectivity ratio plot |
plotSelectivityRatio.pls | Selectivity ratio plot for PLS model |
plotSensitivity | Sensitivity plot |
plotSensitivity.classmodel | Sensitivity plot for classification model |
plotSensitivity.classres | Sensitivity plot for classification results |
plotSpecificity | Specificity plot |
plotSpecificity.classmodel | Specificity plot for classification model |
plotSpecificity.classres | Specificity plot for classification results |
plotVariance | Variance plot |
plotVariance.ldecomp | Explained variance plot for linear decomposition |
plotVariance.pca | Explained variance plot for PCA |
plotVariance.pls | Variance plot for PLS |
plotVIPScores | VIP scores plot |
plotVIPScores.pls | VIP scores plot for PLS model |
plotXCumVariance | X cumulative variance plot |
plotXCumVariance.pls | Cumulative explained X variance plot for PLS |
plotXCumVariance.plsres | Explained cumulative X variance plot for PLS results |
plotXLoadings | X loadings plot |
plotXLoadings.pls | X loadings plot for PLS |
plotXResiduals | X residuals plot |
plotXResiduals.pls | X residuals plot for PLS |
plotXResiduals.plsres | X residuals plot for PLS results |
plotXScores | X scores plot |
plotXScores.pls | X scores plot for PLS |
plotXScores.plsres | X scores plot for PLS results |
plotXVariance | X variance plot |
plotXVariance.pls | Explained X variance plot for PLS |
plotXVariance.plsres | Explained X variance plot for PLS results |
plotXYLoadings | X loadings plot |
plotXYLoadings.pls | XY loadings plot for PLS |
plotXYScores | XY scores plot |
plotXYScores.pls | XY scores plot for PLS |
plotXYScores.plsres | XY scores plot for PLS results |
plotYCumVariance | Y cumulative variance plot |
plotYCumVariance.pls | Cumulative explained Y variance plot for PLS |
plotYCumVariance.plsres | Explained cumulative Y variance plot for PLS results |
plotYResiduals | Y residuals plot |
plotYResiduals.pls | Y residuals plot for PLS |
plotYResiduals.regres | Residuals plot for regression results |
plotYVariance | Y variance plot |
plotYVariance.pls | Explained Y variance plot for PLS |
plotYVariance.plsres | Explained Y variance plot for PLS results |
pls | Partial Least Squares regression |
pls.cal | PLS model calibration |
pls.calculateSelectivityRatio | Selectivity ratio calculation |
pls.calculateVIPScores | VIP scores calculation for PLS model |
pls.crossval | Cross-validation of a PLS model |
pls.run | Runs selected PLS algorithm |
pls.simpls | SIMPLS algorithm |
plsda | Partial Least Squares Discriminant Analysis |
plsda.cal | Calibrate PLS-DA model |
plsda.crossval | Cross-validation of a PLS-DA model |
plsdares | PLS-DA results |
plsres | PLS results |
predict.pca | PCA predictions |
predict.pls | PLS predictions |
predict.plsda | PLS-DA predictions |
predict.simca | SIMCA predictions |
predict.simcam | SIMCA multiple classes predictions |
prep.autoscale | Autoscale values |
prep.msc | Multiplicative Scatter Correction transformation |
prep.norm | Normalization |
prep.savgol | Savytzky-Golay filter |
prep.snv | Standard Normal Variate transformation |
print.classres | Print information about classification result object |
print.ipls | Print method for iPLS |
print.ldecomp | Print method for linear decomposition |
print.pca | Print method for PCA model object |
print.pcares | Print method for PCA results object |
print.pls | Print method for PLS model object |
print.plsda | Print method for PLS-DA model object |
print.plsdares | Print method for PLS-DA results object |
print.plsres | print method for PLS results object |
print.randtest | Print method for randtest object |
print.regcoeffs | print method for regression coefficients class |
print.regres | print method for regression results object |
print.simca | Print method for SIMCA model object |
print.simcam | Print method for SIMCAM model object |
print.simcamres | Print method for SIMCAM results object |
print.simcares | Print method for SIMCA results object |
randtest | Randomization test for PLS regression |
regcoeffs | Regression coefficients |
regcoeffs.getStat | Confidence intervals and p-values for regression coeffificents |
regres | Regression results |
regres.bias | Prediction bias |
regres.r2 | Determination coefficient |
regres.rmse | RMSE |
regres.slope | Slope |
reslim.chisq | Calculates critical limits or statistic values for Q-residuals using Chi-squared distribution |
reslim.dd | Statistical limits for Q and T2 residuals using Data Driven approach |
reslim.hotelling | Calculates critical limits for T2-residuals using Hotelling T2 distribution |
reslim.jm | Calculates critical limits for Q-residuals using classic JM approach |
selectCompNum | Select optimal number of components for a model |
selectCompNum.pca | Select optimal number of components for PCA model |
selectCompNum.pls | Select optimal number of components for PLS model |
setResLimits | Set residual limits for PCA model |
setResLimits.pca | Set statistical limits for Q and T2 residuals for PCA model |
showPredictions | Predictions |
showPredictions.classres | Show predicted class values |
simca | SIMCA one-class classification |
simca.classify | SIMCA classification |
simca.crossval | Cross-validation of a SIMCA model |
simcam | SIMCA multiclass classification |
simcam.getPerformanceStatistics | Performance statistics for SIMCAM model |
simcamres | Results of SIMCA multiclass classification |
simcares | Results of SIMCA one-class classification @description 'simcares' is used to store results for SIMCA one-class classification. |
simdata | Spectral data of polyaromatic hydrocarbons mixing |
summary.classres | Summary statistics about classification result object |
summary.ipls | Summary for iPLS results |
summary.ldecomp | Summary statistics for linear decomposition |
summary.pca | Summary method for PCA model object |
summary.pcares | Summary method for PCA results object |
summary.pls | Summary method for PLS model object |
summary.plsda | Summary method for PLS-DA model object |
summary.plsdares | Summary method for PLS-DA results object |
summary.plsres | summary method for PLS results object |
summary.randtest | Summary method for randtest object |
summary.regcoeffs | Summary method for regcoeffs object |
summary.regres | summary method for regression results object |
summary.simca | Summary method for SIMCA model object |
summary.simcam | Summary method for SIMCAM model object |
summary.simcamres | Summary method for SIMCAM results object |
summary.simcares | Summary method for SIMCA results object |