
sparseMVN: An R Package for Multivariate Normal

Functions with Sparse Covariance and Precision

Matrices

Michael Braun
Edwin L. Cox School of Business
Southern Methodist University

Abstract

The number of elements in a multivariate normal (MVN) covariance or precision ma-
trix grows quadratically in the number of variables. Thus, sampling from, and computing
densities of, an MVN random variable is not scalable when all matrix elements are stored
as a dense R matrix, but may be when the matrix is sparse, and stored in a suitable com-
pressed format. This package provides standard MVN sampling and density algorithms
that are optimized for sparse covariance and precision matrices.

Keywords: multivariate normal, sparse matrices, covariance, simulation.

The mvtnorm package (Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn 2017) provides
the dmvnorm function to compute the density of a multivariate normal (MVN) distributon,
and the rmvnorm function to simulate MVN random variables. These functions require the
user to supply a full, “dense” covariance matrix; if starting with a precision matrix, the user
must first invert it explicitly. This covariance matrix is dense in the sense that, for an M -
dimensional MVN random variable, all M2 elements are stored, so memory requirements grow
quadratically with the size of the problem. Internally, both functions factor the covariance
matrix using a Cholesky decomposition, whose complexity is O

(
M3
)
(Golub and Van Loan

1996).1 This factorization is performed every time the function is called, even if the covariance
matrix does not change from call to call. Also, rmvnorm involves multiplication of a triangular
matrix, and dmvnorm involves solving a triangular linear system. Both of these operations are
O
(
M2
)

(Golub and Van Loan 1996) on dense matrices. MVN functions in other packages,
such as MASS (Venables and Ripley 2002) and LaplacesDemon (Statisticat LLC. 2016), face
similar limitations.2 Thus, existing tools for working with the MVN distribution in R are not
practical for high-dimensional MVN random variables.

However, for many applications the covariance or precision matrix is sparse, meaning that the
proportion of nonzero elements is small, relative to the total size of the matrix. The functions
in the sparseMVN package exploit that sparsity to reduce memory requirements, and to gain
computational efficiencies. The dmvn.sparse function computes the MVN density, and the
rmvn.sparse function samples from an MVN random variable. Instead of requiring the user

1dmvnorm has options for eigen and singular value decompositions. These are both O
(
M3

)
as well.

2LaplacesDemon does offer options for the user to supply pre-factored covariance and precision matrices.
This avoids repeated calls to the O

(
M3

)
factorization step, but not the O

(
M2

)
matrix multiplication and

linear system solution steps.

2 sparseMVN

to supply a dense covariance matrix, dmvn.sparse and rmvn.sparse accept a pre-computed
Cholesky decomposition of either the covariance or precision matrix in a compressed sparse
format. This approach has several advantages:

1. Memory requirements are smaller because only the nonzero elements of the matrix are
stored in a compressed sparse format.

2. Linear algebra algorithms that are optimzed for sparse matrices are more efficient be-
cause they avoid operations on matrix elements that are known to be zero.

3. When the precision matrix is initially available, there is no need to invert it into a
covariance matrix explicitly. This feature of sparseMVN preserves sparsity, because the
inverse of a sparse matrix is not necessarily sparse.

4. The Cholesky factor of the matrix is computed once, before the first sparseMVN func-
tion call, and is not repeated with subsequent calls (as long as the matrix does not
change).

The functions in sparseMVN rely on sparse matrix classes and functions defined in the Matrix
package (Bates and Maechler 2017). The user creates the covariance or precision matrix
as a sparse, symmetric dsCMatrix matrix, and computes the sparse Cholesky factor using
the Cholesky function. Other than ensuring that the factor for the covariance or precision
matrix is in the correct format, the sparseMVN functions behave in much the same way
as the corresponding mvtnorm functions. Internally, sparseMVN uses standard methods of
computing the MVN density and simulating MVN random variables (see Section 1.1). Since
a large proportion of elements in the matrix are zero, we need to store only the row and
column indices, and the values, of the unique nonzero elements. The efficiency gains in
sparseMVN come from storing the covariance or precision matrix in a compressed format
without explicit zeros, and applying linear algebra routines that are optimized for those
sparse matrix structures. The Matrix package calls sparse linear algebra routines that are
implemented in the CHOLMOD library (Chen, Davis, Hager, and Rajamanickam 2008; Davis
and Hager 1999, 2009).

1. Background

Let x ∈ RM be a realization of random variable X ∼MVN(µ,Σ), where µ ∈ RM is a vector,
Σ ∈ RM×M is a positive-definite covariance matrix, and Σ−1 ∈ RM×M is a positive-definite
precision matrix.

The log probability density of x is

log f(x) = −1

2

(
M log(2π) + log |Σ|+ z>z

)
, where z>z = (x− µ)>Σ−1 (x− µ) (1)

1.1. MVN density computation and random number generation

The two computationally intensive steps in evaluating log f(x) are computing log |Σ|, and
z>z, without explicitly inverting Σ or repeating mathematical operations. How one performs

Michael Braun 3

these steps efficiently in practice depends on whether the covariance matrix Σ, or the precision
matrix Σ−1 is available. For both cases, we start by finding a lower triangular matrix root:
Σ = LL> or Σ−1 = ΛΛ>. Since Σ and Σ−1 are positive definite, we will use the Cholesky
decomposition, which is the unique matrix root with all positive elements on the diagonal.

With the Cholesky decomposition in hand, we compute the log determinant of Σ by adding
the logs of the diagonal elements of the factors.

log |Σ| =

{
2
∑M

m=1 logLmm when Σ is given

−2
∑M

m=1 log Λmm when Σ−1 is given
(2)

Having already computed the triangular matrix roots also speeds up the computation of z>z.
If Σ−1 is given, z = Λ>(x − µ) can be computed efficiently as the product of an upper
triangular matrix and a vector. When Σ is given, we find z by solving the lower triangular
system Lz = x− µ. The subsequent z>z computation is trivially fast.

The algorithm for simulating X ∼MVN(µ,Σ) also depends on whether Σ or Σ−1 is given. As
above, we start by computing the Cholesky decomposition of the given covariance or precision
matrix. Define a random variable Z ∼MVN(0, IM), and generate a realization z as a vector
of M samples from a standard normal distribution. If Σ is given, then evaluate x = Lz + µ.
If Σ−1 is given, then solve for x in the triangular linear system Λ> (x− µ) = z. The resulting
x is a sample from MVN(µ,Σ). We confirm the mean and covariance of X as follows:

E(X) = E(LZ + µ) = E
(

Λ>Z + µ
)

= µ (3)

cov(X) = cov(LZ + µ) = E
(
LZZ>L>

)
= LL> = Σ (4)

cov(X) = cov
(

Λ>
−1
Z + µ

)
= E

(
Λ>

−1
ZZ>Λ−1

)
= Λ>

−1
Λ−1 = (ΛΛ>)−1 = Σ (5)

These algorithms apply when the covariance/precision matrix is either sparse or dense. When
the matrix is dense, the computational complexity is O

(
M3
)

for a Cholesky decomposition,
and O

(
M2
)

for either solving the triangular linear system or multiplying a triangular matrix
by another matrix (Golub and Van Loan 1996). Thus, the computational cost grows cubically
with M before the decomposition step, and quadratically if the decomposition has already
been completed. Additionally, the storage requirement for Σ (or Σ−1) grows quadratically
with M .

1.2. Sparse matrices in R

The Matrix package (Bates and Maechler 2017) defines various classes for storing sparse
matrices in compressed formats. The most important class for our purposes is dsCMatrix,
which defines a symmetric matrix, with numeric (double precision) elements, in a column-
compressed format. Three vectors define the underlying matrix: the unique nonzero values
(just one triangle is needed), the indices in the value vector for the first value in each column,
and the indices of the rows in which each value is located. The storage requirements for a
sparse M ×M symmetric matrix with V unique nonzero elements in one triangle are for V
double precision numbers, V + M + 1 integers, and some metadata. In contrast, a dense
representation of the same matrix stores M2 double precision values, regardless of symmetry
and the number of zeros. If V grows more slowly than M2, the matrix becomes increasingly

4 sparseMVN

sparse (a smaller percentage of elements are nonzero), with greater efficiency gains from
storing the matrix in a compressed sparse format.

An example

To illustrate how sparse matrices require less memory resources when compressed than when
stored densely, consider the following example, which borrows heavily from the vignette of
the sparseHessianFD package (Braun 2017).

Suppose we have a dataset of N households, each with T opportunities to purchase a par-
ticular product. Let yi be the number of times household i purchases the product, out of
the T purchase opportunities, and let pi be the probability of purchase. The heterogeneous
parameter pi is the same for all T opportunities, so yi is a binomial random variable.

Let βi ∈ Rk be a heterogeneous coefficient vector that is specific to household i, such that
βi = (βi1, . . . , βik). Similarly, wi ∈ Rk is a vector of household-specific covariates. Define each
pi such that the log odds of pi is a linear function of βi and wi, but does not depend directly
on βj and wj for another household j 6= i.

pi =
exp(w′iβi)

1 + exp(w′iβi)
, i = 1...N (6)

The coefficient vectors βi are distributed across the population of households following a MVN
distribution with mean µ ∈ Rk and covariance A ∈ Rk×k. Assume that we know A, but not
µ, so we place a multivariate normal prior on µ, with mean 0 and covariance Ω ∈ Rk×k. Thus,
the parameter vector x ∈ R(N+1)k consists of the Nk elements in the N βi vectors, and the k
elements in µ.

The log posterior density, ignoring any normalization constants, is

log π(β1:N , µ|Y,W,A,Ω) =
N∑
i=1

(
pyii (1− pi)T−yi −

1

2
(βi − µ)>A−1 (βi − µ)

)
− 1

2
µ>Ω−1µ

(7)

Because one element of βi can be correlated with another element of βi (for the same unit), we
allow for the cross-partials between elements of βi for any i to be nonzero. Also, because the
mean of each βi depends on µ, the cross-partials between µ and any βi can be nonzero. How-
ever, since the βi and βj are independent samples, and the yi are conditionally independent,
the cross-partial derivatives between an element of βi and any element of any βj for j 6= i,
must be zero. When N is much greater than k, there will be many more zero cross-partial
derivatives than nonzero, and the Hessian of the log posterior density will be sparse.

The sparsity pattern depends on how the variables are ordered. One such ordering is to group
all of the coefficients in the βi for each unit together, and place µ at the end.

β11, . . . , β1k, β21, . . . , β2k, . . . , βN1, . . . , βNk, µ1, . . . , µk (8)

In this case, the Hessian has a “block-arrow” pattern. Figure 1a illustrates this pattern for
N = 5 and k = 2 (12 total variables).

Another possibility is to group coefficients for each covariate together.

β11, . . . , βN1, β12, . . . , βN2, . . . , β1k, . . . , βNk, µ1, . . . , µk (9)

Michael Braun 5

[1,] | | | |

[2,] | | | |

[3,] . . | | | |

[4,] . . | | | |

[5,] | | | |

[6,] | | | |

[7,] | | . . | |

[8,] | | . . | |

[9,] | | | |

[10,] | | | |

[11,] | | | | | | | | | | | |

[12,] | | | | | | | | | | | |

(a) A “block-arrow” sparsity pattern.

[1,] | | | |

[2,] . | | . . . | |

[3,] . . | | . . | |

[4,] . . . | | . | |

[5,] | | | |

[6,] | | | |

[7,] . | | . . . | |

[8,] . . | | . . | |

[9,] . . . | | . | |

[10,] | | | |

[11,] | | | | | | | | | | | |

[12,] | | | | | | | | | | | |

(b) A “banded” sparsity pattern.

Figure 1: Two examples of sparsity patterns for a hierarchical model.

Now the Hessian has an ”banded” sparsity pattern, as in Figure 1b.

In both cases, the number of nonzeros is the same. There are 144 elements in this symmetric
matrix. If the matrix is stored in the standard base R dense format, memory is reserved
for all 144 values, even though only 64 values are nonzero, and only 38 values are unique.
For larger matrices, the reduction in memory requirements by storing the matrix in a sparse
format can be substantial.3. If N =1,000, then M =2,002, with more than 4 million elements
in the Hessian. However, only 12,004 of those elements are nonzero, with 7,003 unique values
in the lower triangle. The dense matrix requires 30.6 Mb of RAM, while a sparse symmetric
matrix of the dsCMatrix class requires only 91.5 Kb.

This example is relevant because, when evaluated at the posterior mode, the Hessian matrix
of the log posterior is the MVN precision matrix Σ−1 of a MVN approximatation to the
posterior distribution of (β1:N , µ). If we were to simulate from this MVN using rmvnorm, or
evaluate MVN densities using dmvnorm, we would need to invert Σ−1 to Σ first, and store
it as a dense matrix. Internally, rmvnorm and dmvnorm invoke dense linear algebra routines,
including matrix factorization.

2. Using the sparseMVN package

The signatures of the sparseMVN key sparse matrix functions are

rmvn.sparse(n, mu, CH, prec=TRUE)

dmvn.sparse(x, mu, CH, prec=TRUE, log=TRUE)

The rmvn.sparse function returns a matrix x with n rows and length(mu) columns. dmvn.sparse
returns a vector of length n: densities if log=FALSE, and log densities if log=TRUE.

3Because sparse matrix structures store row and column indices of the nonzero values, they may use more
memory than dense storage if the total number of elements is small

6 sparseMVN

x A numeric matrix. Each row is an MVN sample.

mu A numeric vector. The mean of the MVN random variable.

CH Either a dCHMsimpl or dCHMsuper object representing the Cholesky decomposi-
tion of the covariance/precision matrix.

prec Logical value that identifies CH as the Cholesky decomposition of either a covariance
(Σ, prec=TRUE) or precision(Σ−1, prec=FALSE) matrix.

n Number of random samples to be generated.

log If log=TRUE, the log density is returned.

Table 1: Arguments to the rmvn.sparse and dmvn.sparse functions.

Table 1 describes the function arguments. These functions do require the user to compute
the Cholesky decomposition CH beforehand, but this needs to be done only once (as long
as Σ or Σ−1 does not change). CH should be computed using the Cholesky function from
the Matrix package. More details about the Cholesky function are available in the Matrix
documentation, but it is a simple function to use. The first argument is a sparse symmetric
matrix stored as a dsCMatrix object. As far as we know, there is no particular need to deviate
from the defaults of the remaining arguments. If Cholesky uses a fill-reducing permutation
to compute CH, the sparseMVN functions will handle that directly, with no additional user
intervention required. The chol function in base R should not be used.

2.1. An example

Suppose we want to generate samples from an MVN approximation to the posterior distribu-
tion of our example model from Section 1.2. sparseMVN includes functions to simulate data
for the example (binary.sim), and to compute the log posterior density (binary.f), gradient
(binary.grad), and Hessian (binary.hess). The trust.optim function in the trustOptim
package (Braun 2014) is a nonlinear optimizer that estimates the curvature of the objective
function using a sparse Hessian.

R> D <- sparseMVN::binary.sim(N=50, k=2, T=50)

R> priors <- list(inv.A=diag(2), inv.Omega=diag(2))

R> start <- rep(c(-1,1),51)

R> opt <- trustOptim::trust.optim(start,

+ fn=sparseMVN::binary.f,

+ gr=sparseMVN::binary.grad,

+ hs=sparseMVN::binary.hess,

+ data=D, priors=priors,

+ method="Sparse",

+ control=list(function.scale.factor=-1))

The call to trust.optim returns the posterior mode, and the Hessian evaluated at the mode.
These results serve as the mean and the negative precision of the MVN approximation to the
posterior distribution of the model.

R> R <- 100

Michael Braun 7

R> pm <- opt[["solution"]]

R> H <- -opt[["hessian"]]

R> CH <- Cholesky(H)

We can then sample from the posterior using an MVN approximation, and compute the MVN
log density for each sample.

R> samples <- rmvn.sparse(R, pm, CH, prec=TRUE)

R> logf <- dmvn.sparse(samples, pm, CH, prec=TRUE)

The ability to accept a precision matrix, rather than having to invert it to a covariance
matrix, is a valuable feature of sparseMVN. This is because the inverse of a sparse matrix is
not necessarily sparse. In the following chunk, we invert the Hessian, and drop zero values to
maintain any remaining sparseness. Note that there are 10,404 total elements in the Hessian.

R> Matrix::nnzero(H)

[1] 402

R> Hinv <- drop0(solve(H))

R> Matrix::nnzero(Hinv)

[1] 10404

Nevertheless, we should check that the log densities from dmvn.sparse correspond to those
that we would get from dmvnorm.

R> logf_dense <- dmvnorm(samples, pm, as.matrix(Hinv), log=TRUE)

R> all.equal(logf, logf_dense)

[1] TRUE

3. Timing

In this section we show the efficiency gains from sparseMVN by comparing the run times
between rmvn.sparse and rmvnorm, and between dmvn.sparse and dmvnorm. In these tests,
we construct covariance/precision matrices with the same structure as the Hessian of the log
posterior density of the example model in Section 2.1. Parameters are ordered such that the
matrix has a block-arrow pattern, as in Figure 1a. The size and sparsity of the test matrices
vary through manipulation of the number of blocks (N), the size of each block (k), and the
number of rows/columns in the margin (also k). Each test matrix has (N + 1)k rows and
columns. Table 2 summarizes the case conditions.

Figure 2 compares mean run times to compute 1,000 MVN densities, and generate 1,000
MVN samples, using functions in sparseMVN (rmvn.sparse, dmvn.sparse) and mvtnorm

8 sparseMVN

nonzeros

N variables elements full lower tri sparsity

k=2

10 22 484 124 73 0.256
20 42 1,764 244 143 0.138
50 102 10,404 604 353 0.058

100 202 40,804 1,204 703 0.030
200 402 161,604 2,404 1,403 0.015
300 602 362,404 3,604 2,103 0.010
400 802 643,204 4,804 2,803 0.007
500 1,002 1,004,004 6,004 3,503 0.006

k=4

10 44 1,936 496 270 0.256
20 84 7,056 976 530 0.138
50 204 41,616 2,416 1,310 0.058

100 404 163,216 4,816 2,610 0.030
200 804 646,416 9,616 5,210 0.015
300 1,204 1,449,616 14,416 7,810 0.010
400 1,604 2,572,816 19,216 10,410 0.007
500 2,004 4,016,016 24,016 13,010 0.006

Table 2: Cases for timing comparision. N and k refer, respectively, to the number of blocks
in the block-arrow structure (analogous to heterogeneous units in the binary choice example),
and the size of each block. The total number of variables is M = (N + 1)k, and the total
number of elements in the matrix is M2. The three rightmost columns present the number of
nonzeros in the full matrix and lower triangle, and the sparsity (proportion of matrix elements
that are nonzero).

Michael Braun 9

●● ● ● ●
●

●

●

●● ● ● ●
●

●

●

●● ● ●

●

●

●

●

●● ● ●

●

●

●

●

k = 2 k = 4

density
random

0 100 200 300 400 500 0 100 200 300 400 500

0

1,000

2,000

3,000

4,000

0

2,000

4,000

6,000

Number of blocks (N)

C
om

pu
ta

tio
n

tim
e

(m
ill

is
ec

on
ds

)

Pattern
● dense

sparse

Figure 2: Mean computation time for simulating 1,000 MVN samples, and computing 1,000
MVN densities, averaged over 200 replications. Densities were computed using dmvnorm and
dmvn.sparse, while random samples were generated using rmvnorm and rmvn.sparse.

(rmvnorm, dmvnorm). Times were collected over 200 replications on a 2013-vintage Mac Pro
with a 12-core 2.7 GHz Intel Xeon E5 processor and 64 GB of RAM. The times for mvtnorm
are faster than sparseMVN for low dimensional cases (N ≤ 50), but grow quadratically in
the number of variables.4 This is because the number of elements stored in a dense covari-
ance matrix grows quadratically with the number of variables. In this example, storage and
computation requirements for the sparse matrix grow linearly with the number of variables,
so the sparseMVN run times grow linearly as well (Braun and Damien 2016, sec. 4). The
comparative advantage of sparseMVN increases with the sparsity of the covariance matrix.5

The sparseMVN functions always require a sparse Cholesky decomposition of the covariance or
precision matrix, and the mvtnorm functions require a dense precision matrix to be inverted
into a dense covariance matrix. Figure 3 compares the computation times of these preparatory
steps. There are three cases to consider: inverting a dense matrix using the solve function,
decomposing a sparse matrix using Cholesky, and decomposing a dense matrix using chol.

4As an example, in the N = 10, k = 2 case, the mean time to compute 1,000 MVN densities is 1.1 ms using
dmvnorm, but more than 3.7 ms using dmvn.sparse.

5Across all cases there was hardly any difference in the sparseMVN run times when providing the precision
matrix instead of the covariance.

10 sparseMVN

●● ● ● ● ● ● ● ●● ● ● ● ●
●

●

k = 2 k = 4

0 100 200 300 400 500 0 100 200 300 400 500

0

5,000

10,000

15,000

Number of blocks (N)

C
om

pu
ta

tio
n

tim
e

(m
ill

is
ec

on
ds

)

Pattern/Operation

● dense Cholesky

dense inversion

sparse Cholesky

Figure 3: Computation time for Cholesky decomposition of sparse and dense matrices, and
inversion of dense matrices.

Applying chol to a dense function is not a required operation in advance of calling rmvnorm

or dmvnorm, but those functions will invoke some kind of decomposition internally. We include
it in our comparison because it comprises a substantial part of the computation time. The
decomposition and inversion operations on the dense matrices grow cubically as the size of
the matrix increases. The sparse Cholesky decomposition time is negligible. For example, the
mean run time for the N = 500, k = 4 case is about 0.39 ms.

Code to replicate the data used in Figures 2 and 3 is available as an online supplement to
this paper, and in the doc/ directory of the installed package.

References

Bates D, Maechler M (2017). Matrix: Sparse and Dense Matrix Classes and Methods. R
package version 1.2-8, URL https://CRAN.R-project.org/package=Matrix.

Braun M (2014). “trustOptim: An R Package for Trust Region Optimization with Sparse
Hessians.” Journal of Statistical Software, 60(4), 1–16. URL http://www.jstatsoft.org/

v60/i04/.

Braun M (2017). sparseHessianFD: An R Package for Estimating Sparse Hessians. URL
https://cran.r-project.org/package=sparseHessianFD.

Braun M, Damien P (2016). “Scalable Rejection Sampling for Bayesian Hierarchical Models.”
Marketing Science, 35(3), 427–444. doi:10.1287/mksc.2014.0901.

Chen Y, Davis TA, Hager WW, Rajamanickam S (2008). “Algorithm 887: CHOLMOD,
Supernodal Sparse Cholesky Factorization and Update/Downdate.” ACM Transactions on
Mathematical Software, 35(3), 1–14. doi:10.1145/1391989.1391995.

https://CRAN.R-project.org/package=Matrix
http://www.jstatsoft.org/v60/i04/
http://www.jstatsoft.org/v60/i04/
https://cran.r-project.org/package=sparseHessianFD
http://dx.doi.org/10.1287/mksc.2014.0901
http://dx.doi.org/10.1145/1391989.1391995

Michael Braun 11

Davis TA, Hager WW (1999). “Modifying a Sparse Cholesky Factorization.” SIAM Journal
on Matrix Analysis and Applications, 20(3), 606–627. doi:10.1137/S0895479897321076.

Davis TA, Hager WW (2009). “Dynamic Supernodes in Sparse Cholesky Update/Downdate
and Triangular Solves.” ACM Transactions on Mathematical Software, 35(4), 1–23. doi:

10.1145/1462173.1462176.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2017). mvtnorm: Multi-
variate Normal and t Distributions.

Golub GH, Van Loan CF (1996). Matrix Computations. 3rd edition. Johns Hopkins University
Press.

Statisticat LLC (2016). LaplacesDemon: Complete Environment for Bayesian Inference. R
package version 16.0.1, URL https://cran.r-project.org/package=LaplacesDemon.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition. Springer-
Verlag.

Affiliation:

Michael Braun
Edwin L. Cox School of Business
Southern Methodist University
6212 Bishop Blvd.
Dallas, TX 75275
E-mail: braunm@smu.edu
URL: http://www.smu.edu/Cox/Departments/FacultyDirectory/BraunMichael

http://dx.doi.org/10.1137/S0895479897321076
http://dx.doi.org/10.1145/1462173.1462176
http://dx.doi.org/10.1145/1462173.1462176
https://cran.r-project.org/package=LaplacesDemon
mailto:braunm@smu.edu
http://www.smu.edu/Cox/Departments/FacultyDirectory/BraunMichael

	Background
	MVN density computation and random number generation
	Sparse matrices in R
	An example

	Using the sparseMVN package
	An example

	Timing

