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Abstract

Combining the results from regression analyses in a meta-analysis of-
ten proves difficult because differences in the statistical methods and in
the units of measurement or the encoding of the variables invalidate a
direct comparison of the regression coeflicients. In this article, we suggest
simple and straightforward methods to extract unified measures for quan-
tifying effects on binary dependent variables that are comparable across
different studies even if the studies use different statistical methods, dif-
ferent units of measurement, or different codings of the variables. The
suggested effect measures can be applied to continuous, interval-coded,
and categorical covariates. We, furthermore, suggest methods to obtain
valid approximations of the standard errors of the unified effect measures
that can be used, e.g., as weighting factors in a subsequent meta-analysis.
We have implemented all suggested methods in the R package urbin that
we use to demonstrate the application of our methodology.
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1 Introduction

Combining the results from different regression analyses in a meta-analysis of-
ten proves difficult because differences in the applied estimation methods and
differences in the units of measurement or the encoding of the variables of in-
terest invalidate a direct comparison of the regression coefficients. For simple
linear regression models, e.g., ordinary least squares regression models, these
problems can to some extent be overcome by calculating an ‘elasticity’ for each
continuous covariate of interest at the sample mean, and a relative effect size
of each categorical covariate of interest. These measures indicate by how many
percent the dependent variable changes if a continuous covariate increases by
one percent or if a categorical covariate changes from a reference category to
the category of interest. However, for many non-linear regression models, e.g.,

*corresponding author. Technical University of Denmark, Department of Management
Engineering, Produktionstorvet 426, 2800 Kgns. Lyngby, Denmark. Phone +45-2135-8518,
e-mail: gehe@dtu.dk.

TUniversity of Copenhagen, Department of Food and Resource Economics, Rolighedsvej 25,
1958 Frederiksberg C, Denmark. Phone: +45-3533-2274, e-mail: arne@ifro.ku.dk.

fGeraldine Henningsen was supported by the ‘SAVE-E’ project funded by the ‘Innovation
Fund Denmark’ (grant number: 4106-00009B). The authors declare no conflicts of interest.
Senior authorship is shared.


gehe@dtu.dk
arne@ifro.ku.dk

generalised linear models, this approach is no longer straightforward and of-
ten requires more statistical information than is usually provided in articles, in
particular if the user wishes to obtain valid standard errors for those measures.

This article introduces simple and straightforward methods to extract com-
parable effect measures and their corresponding standard errors from studies
with binary and categorical dependent variables.! We demonstrate how to de-
rive semi-elasticities for continuous covariates and effect size measures for cate-
gorical or ordered covariates from the statistical information usually provided in
articles. Furthermore, we demonstrate how to transform and unify differently
encoded variables, by showing how to calculate a semi-elasticity of an interval-
coded covariate, how to calculate the effect size by turning a continuous covariate
into an interval-coded covariate, and how to change the reference category or the
grouping of a categorical covariate in order to make effects comparable across
different studies. Finally, we introduce a simple and novel way to calculate valid
approximations of the standard errors for the derived semi-elasticities and effect
size measures in cases where the full variance-covariance matrix of the regression
model is unavailable—which we deem to be the standard for most publications.

We demonstrate the application of our methodology by means of a data set
on women’s labour force participation [1] and the R [2] package urbin [3], in
which we have implemented all methods that we suggest in this article.

The article is structured as follows: section two gives a brief introduction to
the data set; section three briefly presents the regression methods that we cover
in this article; sections four to seven discuss the various approaches for calcu-
lating semi-elasticities, effect sizes, and corresponding standard errors; section
eight demonstrates how these approaches can be applied to non-binary categor-
ical dependent variables; finally, section nine concludes.

2 Data for empirical example

We use an empirical example based on a data set on women’s labour force
participation [1] to demonstrate the application of our methodology using R
package urbin [3] and to test the validity of the approximated standard errors
in cases where the full variance-covariance matrix is unavailable to the user.
The data set is available through the R package sampleSelection [4] under the
name Mroz87.

The data set contains 753 observations on married women and their respec-
tive labour force participation in the year 1975, as well as various socio-economic
background variables. In total the data set includes 22 variables. Table 1 pro-
vides the summary statistics of the variables in this data set.?

In our empirical example, we use the women’s labour force participation
(1fp) as dependent (outcome) variable. Variable 1fp is a dummy variable, where
a ‘1’ represents labour force participation and a ‘0’ represents no labour force
participation. We regress this variable on a dummy variable for the presence of

1The estimation methods covered here are the linear probability model, logistic regression,
probit regression, ordinal probit regression, multivariate probit regression, and multinomial
logistic regression. We refrain for the time being from estimation methods for discrete choice
experiments, e.g., conditional logistic regression, or mixed logistic regression.

2A more detailed description of the variables in this data set is available, e.g., in the
documentation of the sampleSelection package. The R code that loads the data set and prepares
it for the examples in Sections 4 to 8 is available in Appendix Section C.1.
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children in the household (kids), the woman’s age in years (age), and her years
of education (educ):

Pr(1fp = 1]kids, age, educ) = f(kids, age, educ) (1)

Variable age is our primary variable of interest and we use it either as a con-
tinuous covariate or as an interval-coded covariate with four intervals: 30-37,
38-44, 4562, and 6370 years.

To demonstrate how to apply our methods to regression models where the
dependent variable has more than two categories, e.g., ordered probit models
and multinomial logistic regressions, and to test approximations of standard
errors from estimates derived from these regressions models, we create an addi-
tional variable for labour force participation that has three categories: ‘no labour
force participation’ (0 working hours), ‘part-time labour force participation’ (1-
1,300 working hours), and ‘full-time labour force participation’ (;1,300 working
hours).

We estimate equation (1) with the estimation methods discussed in this
article. The regression results provide the variance-covariance matrices of the
estimated coefficients so that we can apply the Delta method [5] to calculate
approximate standard errors of the calculated effect size measures. We use these
standard errors as benchmarks to assess the quality of various approximations
for cases where all off-diagonal elements of the variance-covariance matrix are
unknown, which is the case for most studies published in the literature, as
usually only the standard errors (or t-values) of the estimates are reported.

3 Estimation methods

Most estimation methods that can handle binary or categorical dependent vari-
ables can be categorised into two groups: methods where the link function
follows a normal distribution, so-called probit regressions, and methods where
the link function follows a logistic distribution, logistic regressions.®> Another
approach that has regained popularity in recent years because it is based on
fewer assumptions than other approaches is the linear probability model, which
uses a simple linear link function, and, thus, can be estimated by ordinary least
squares (OLS) and other estimators for linear regression models.

The linear probability model assumes that a Bernoulli trial can be explained
by a linear combination of covariates:

K
Pr(Y = 11X =) = fo+ D _ Bj;, (2)

j=1
where Y € {0,1} is a binary dependent variable, x = (x1,...,2x) " is a vector
of K covariates, and 8 = (Bo, ..., 8K)" is a vector of K +1 unknown coefficients.

3There exists a multitude of estimation techniques for models with categorical dependent
variables, quasi-categorical dependent variables, like count data, or outcome variables that
can be transferred into a binary or categorical variables, like truncated variables. We consider
these regression models to be outside the scope of this article.



A probit regression model [6, 7] models the same relationship assuming a
probit link function which follows a standard normal distribution:

K
Pr(Y =1[X =2) = | o+ Y Bjz; | . (3)
j=1

where ®(-) is the cumulative distribution function of the standard normal dis-
tribution.
The logistic regression [8] uses a logit link function:

exp (50 + Zle Bkl’k)

Pr(Y = 1|X = ) = :
1+ exp (50 + Eszl 5k’£k>

(4)

A bivariate or multivariate probit model generalises the probit regression
model (3) to simultaneously estimate two or more probit equations for different
binary dependent variables Y7,...,Yy, where a potential correlation between
the error terms of the different probit equations is explicitly modelled. As
meta-analyses usually focus on one specific dependent variable, the coefficients
of the regression equations for the other dependent variables and the correlation
structure of the error terms in the multivariate probit regression model can be
ignored. Hence, the estimation result for the one probit equation of interest
can be treated like an estimation result from a univariate probit regression,
so that equation (3) can be used to calculate the unconditional probabilities
P(Y, = 1|z1,...,2k) and the marginal effects on the unconditional probabili-
ties in bivariate and multivariate probit regression models [9].4

If a study reports the marginal effects based on the regression results of
a probit model, a logistic regression, or a multivariate probit model, one can
assume a first-order Taylor series approximation of these models around the
point, at which the marginal effects were calculated. Under this linear approxi-
mation, the marginal effects can be treated as if they were coeflicients of a linear
probability model (2).

Many extensions of probit and logistic regression models have been developed
to accommodate for more complicated data structures. For instance, regression
methods for dependent variables with more than two categories estimate the
probability that the dependent variable is equal to a certain category. Studies
with this set-up can still be compared to studies with a binary dependent vari-
able if the categories can be grouped into two groups that correspond to the
two outcomes of the binary dependent variable in the other studies.

A modification of the probit regression that handles ordered categorical vari-
ables, i.e., categorical variables where the ordering of the categories is meaning-
ful (think of first place, second and third place), is the ordered probit regression
[10], where the dependent variable can have P distinct and strictly ordered

4We do not take into account the conditional probabilities P(Y, = 1llz1,...,2x,
Yi,...,Yn-1,Yn+1,...,Yp) and the marginal effects on the conditional probabilities, because
we focus on one dependent variable and disregard interrelations between different dependent
variables.



values (Y € {1,..., P}), can be specified as:

K K
Pr(Y =plX =2) =& |y — > Bz | = | ppr — Y B ()

j=1 j=1

Vp=1,..., P,
where po < p1 < ... < pp are the break points, of which g = —oo, up =
oo, and pq,...,up—1 are unknown and, thus, need to be estimated. To make

estimates from an ordered probit model comparable to estimates from models

with a binary dependent variable, we create a new binary dependent variable Y*

by dividing the P distinct values of the dependent variable Y into two categories:
0 ifye{l...p"—-1
1 ifY e{p*,...,P}

with p* € {2, ..., P}. This reduces the ordered probit model to a binary probit
model:®

Pr(Y*=1X =2)=Pr(Y € {p",..., P}|X = 2) (7)
K

=@ |~ + Y Biwg |, (8)
j=1

where the intercept of the binary probit model (3) is equal to the negative value
of the break point that separates Y* =0 from Y* =1, i.e., By = —pp—1.°
The multinomial logistic regression [11] handles estimation models with
multinomial dependent variables, i.e., categorical variables where the ordering
of the categories has no meaning (think of red cars, green, cars, and blue cars):

Pr(Y =p|X =2)=m, (9)
exp (50,17 + Zszl ﬂk,pxk)

= K (10)
1+ Zoe{h..,P}\p* exp (50,0 + 2kt Bk,oxk)

exp (Bo.p + Y4y Bupar)
25:1 exp (50,0 + Zszl 5k,oxk)

Vp=1,..., P,

(11)

where Y € {1,..., P} is a categorical dependent variable with reference cat-
egory p*, B.p = (Bop,---,Brp) ;s p € {1,...,P}\ p* are P — 1 vectors of
K + 1 unknown coefficients each, and 3, =0V j =0,..., K are the K +1
coefficients of the reference category p*, which are all normalized to zero.

5 A proof is given in Appendix Section B.

61f the ordered probit model (5) is estimated with intercept, say, B¢ and (for identification)
by normalising the first (internal) break point to zero, i.e., p1 = 0, the ordered probit model
can be simplified to a binary probit model with intercept 8o = 8§ — pp* 1.



4 Semi-elasticities of continuous covariates

4.1 Semi-elasticities

Differences in the units of measurement of the variables of interest often render
it impossible to directly compare coefficient estimates from different studies. In
many cases, this problem can be circumvented by calculating the elasticity of
the effect, e, = 0In(Y)/0In(zx) = (0Y/0xy) - (xx/Y), e.g., calculated at the
sample mean x = T and Y =Y (e.g., see [12]). The elasticity describes the
percentage change in the dependent variable Y given a one percent increase in
the continuous covariate zp. It is as such unit-free, which allows the user to
compare the effect of a particular covariate across different studies.

In the case of studies with binary dependent variables, the regression model
describes the probability that the dependent variable has a value of one. As the
probability is already coded between zero and one and unit-free, we suggest to
calculate a semi-elasticity of each continuous covariate of interest:

_ OPr(Y =11X =x)

B c Tk, (12)

€k
which can be interpreted as the percentage point change in the probability of
Y being equal to one given a one percent increase in xy.

Table 2 presents the equations for calculating the semi-elasticities of con-
tinuous covariates for all six estimation methods covered in this article. If the
covariate of interest enters the estimation equation both as linear term and as
quadratic term, the equations for calculating the semi-elasticities must be ex-
tended accordingly. These extensions for quadratic terms are included in the
equations in Table 2.

As described in Section 3, certain estimates from bivariate, multivariate, and
ordered probit regressions can be extracted so that parts of these models corre-
spond to binary probit models and the equation for calculating semi-elasticities
of binary probit models can be also applied to bivariate, multivariate, and or-
dered probit models.

We have implemented the calculation of semi-elasticities for all six estimation
methods covered in this article in the R package urbin. In order to demonstrate
how to use this package, we calculate the semi-elasticity of the variable age with
regard to a married woman’s probability to participate in the labour force based
on a probit regression (3) of equation (1).”

The results of the probit regression are presented in Table 3, which in com-
bination with Table 1 represents the standard information that a user usually
can obtain from most publications.

In the following command, function urbinEla calculates the semi-elasticity
of variable age:

urbinEla( coef (estProbit), xMean, xPos = 3, model = "probit" )

#i# semEla stdEr
## -0.3608258 NA

"The R code for estimating these models is available in Appendix Section C.2.



This is done based on the vector of coefficients (including intercept) of the
probit regression, coef (estProbit), and the vector of sample means for all
covariates (including a one for the intercept), xMean. Argument xPos indicates
the position of the covariate(s) of interest, in our example age, in the vectors
coef (estProbit) and xMean. Argument model is set to "probit", because the
coeflicients are obtained from a probit regression and, thus, the semi-elasticity of
variable age has to be calculated based on equation (3). The calculated semi-
elasticity indicates that the probability that a woman is in the labour force
decreases, ceteris paribus, by 0.36 percentage points if her age increases by one
percent.

If variable age also enters the regression equation in quadratic form, we can
simply use argument xPos to point out the positions of both age and age? in
vectors coef (estProbitQ) and xMeanQ:

urbinEla( coef (estProbitQ), xMeanQ, xPos = c( 3, 4 ),
model = "probit" )

#i# semEla stdEr
## -0.3330041 NA

If argument xPos has two elements, function urbinEla automatically uses
the extended formula to accommodate the quadratic term in the calculation of
the semi-elasticity. The semi-elasticity based on the probit model with both a
linear and a quadratic term of age indicates that the probability that a woman
is in the labour force decreases, ceteris paribus, by 0.33 percentage points if her
age increases by one percent.

4.2 Approximation of standard errors

An approximate standard error of the semi-elasticity defined in equation (12)
can be obtained by using the Delta method [5]:

se (ex) = giﬁ’“v&r (ﬁ);ﬁi’;, (13)

where se (¢) indicates the (approximate) standard error of the semi-elasticity e,
Oe, /OB indicates the gradient vector of the semi-elasticity €, with respect to the
coefficients fy, ..., Bk, and Var (8) indicates the variance-covariance matrix of
the estimated coefficients. The gradient vectors for the semi-elasticities, dej /93,
of the various regression models are presented in Appendix Section A.1.

The following commands calculate the same semi-elasticities as above, but
this time include their respective standard errors based on the full variance-
covariances matrices of the estimates:

urbinEla( coef (estProbit), xMean, xPos = 3, model = "probit",
allCoefVcov = vcov(estProbit) )

#i# semEla stdEr
## -0.3608258 0.1145625



urbinEla( coef (estProbitQ), xMeanQ, xPos = c( 3, 4 ),
model = "probit", allCoefVcov = vcov(estProbitQ) )

#i# semEla stdEr
## -0.3330041 0.1104025

As scientific publications usually do not report covariances between esti-
mated coefficients, but only (at best) standard errors (or t-values, which can be
used to calculate the standard errors), the covariances between the estimates
of the coefficient are usually unknown. A simple solution would be to replace
the unknown covariances by zeros. However, in many empirical examples and
a few Monte-Carlo trials, we noticed that ignoring the covariances between the
coeflicients often gives very imprecise, mostly upward-biased, standard errors of
the semi-elasticities, particularly if the models include a quadratic term of the
covariate of interest:

urbinEla( coef (estProbit), xMean, xPos = 3, model = "probit",
allCoefVcov = sqrt(diag(vcov(estProbit))),
seSimplify = FALSE )

## Warning in urbinEla(coef(estProbit), xMean, xPos = 3, model =
"probit", : the returned standard error is likely very imprecise;
you can provide the full covariance matrix via argument ’allCoefVcov’
or do NOT set argument ’seSimplify’ to FALSE to obtain a more
precise standard error

## semEla stdEr
## -0.3608258 0.1378307

urbinEla( coef (estProbitQ), xMeanQ, xPos = c( 3, 4 ),
model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))),
seSimplify = FALSE )

## Warning in urbinEla(coef (estProbitQ), xMeanQ, xPos = c(3,
4), model = "probit", : the returned standard error is likely
very imprecise; you can provide the full covariance matrix via
argument ’allCoefVcov’ or do NOT set argument ’seSimplify’ to
FALSE to obtain a more precise standard error

## Warning: In urbinEla(allCoef = coef(estProbitQ), allXVal =
xMeanQ, xPos = c(3, 4), model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))),
seSimplify = FALSE)

## the returned standard error is likely largely upward biased
and, thus, in most cases meaningless; you can provide the full
covariance matrix via argument ’allCoefVcov’ to avoid this bias
or use argument ’xMeanSd’ to substantially reduce this bias

## semEla stdEr
## -0.3330041 1.7946071

In these empirical examples and Monte Carlo trials, we found that when
covariances are assumed to be zero, simplifying the calculations of the gradients



Oer /OB by assuming that the ‘weighting factors’ in the equations for calculating
the semi-elasticities® do not depend on the coefficients (although they actually
do), gives much better approximations of the standard error than using the
correctly calculated gradients. These simplified gradient vectors are presented
in Appendix Section A.2. As several elements of these simplified gradient vectors
are zero, the calculation of the semi-elasticities with the Delta method ignores
many of the unknown covariances so that a lack of covariances causes a smaller
problem when using the simplified gradients than when using the full gradients.

The huge overestimation of the standard errors of the semi-elasticities in
the presence of a quadratic term of the covariate of interest originates from the
multicollinearity between the quadratic term, the linear term, and the inter-
cept. In an OLS regression, e.g., a linear probability model, with an intercept
and a linear and quadratic term of a covariate, the variance-covariance matrix
of the estimates would be equal to 0?(X " X)™!, where ¢? is the variance of
the error term and X is an N x 3 matrix with N the number of observations
and its three columns being the intercept and the linear and quadratic term of
the covariate, respectively. If we have the values of the covariate, we can cal-
culate the elements w;;;4,j € {1,2,3} of the 3 x 3 matrix W = (XTX)"L.
If we additionally have the standard errors of the coefficients of the linear
and quadratic terms of the covariate, i.e., se(81) and se(f3), respectively,
we can calculate the variance of the error term as o2 = se(f1)?/wa2 or as

02 = se(2)? /w33 and then the covariance between the two coefficients of the

covariate as Cov (31, B2) = 0?wa3 = 02ws. As one usually does not have the
original data that were used in published studies, but rather the mean value
and corresponding standard deviation of the covariate of interest, one can sim-
ulate the values of the covariate, e.g., with a pseudo-random number generator
sampling from a normal distribution using the actual mean and standard de-
viation of the covariate. In cases where the covariate is simulated, the actual
model includes further covariates, or the actual model is not an OLS model
(but, e.g., a probit or logit regression), the two above-described equations for
calculating the variance of the error term give two different values. In these
cases, one can calculate the approximate error variance as a geometric mean:
02~ /(se (B1)2/waa) (se (B2)%/ws3), which is a more conservative measure than
the arithmetic mean.

If a user of the urbinEla function provides standard errors of the coeffi-
cients (rather than the full covariance matrix), it uses the simplified gradients
to calculate the standard errors unless the user sets argument seSimplify to
FALSE. Moreover, if the model includes a quadratic term of the covariate of in-
terest and the user provides the mean value and the standard deviation of the
covariate of interest through argument xMeanSd, urbinEla uses a pseudo ran-
dom number generator to draw 1,000 values from a normal distribution with the
provided mean value and standard deviation of the covariate and then imputes
the covariance between the coefficients of the linear and quadratic term of the
covariate as described in the previous paragraph.

The following command uses the simplified gradient and—for the probit
regression with the quadratic term—additionally an imputed value of the co-
variance between the coefficients of the linear and quadratic term of the age

81.e., ¢(-) for different types of probit models, exp(-)/(1 + exp(-))? for logistic regression
models, and 7, and 7, for multinomial logistic regression models, see Table 2.

10



variable to calculate approximate standard errors of the semi-elasticities:

urbinEla( coef (estProbit), xMean, xPos = 3, model = "probit",
allCoefVcov = sqrt(diag(vcov(estProbit))) )

## semEla stdEr
## -0.3608258 0.1145860

urbinEla( coef (estProbitQ), xMeanQ, xPos = c( 3, 4 ),
model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))),
xMeanSd = c( mean(Mroz87$age), sd(Mroz87$age) ) )

## semEla stdEr
## -0.3330041 0.1333182

These standard errors are much closer to the standard errors based on the full
variance-covariance matrices than the naive calculations with the full gradients
and replacing the missing covariances by zeros.

5 Semi-elasticities of interval-coded covariates

5.1 Semi-elasticities

In meta-analyses where the user is interested in comparing the semi-elasticities
of a certain continuous covariate across different studies, studies that code
the covariate of interest in intervals cause a serious problem, as coefficients of
interval-coded covariates cannot be compared to coefficients or semi-elasticities
of continuous covariates. To overcome this problem, we suggest in this section
a procedure to derive a semi-elasticity of an interval-coded covariate.

A regression model with a binary dependent variable, where the kth covariate
is interval-coded can be specified as:

Pr(Y =1X =x)=g | Bo+ >, Bizj+ > 6mDm |, (14)
je{l,...K\k me{l,...M¥\m*
b _ {1 if by < 2 < by

] Vm=1,...,M, (15)
0 otherwise

where g() is a generic link function that can take any form, z = (x1,...,7x)"
is a vector of K continuous covariates, whereas the actual values of one of these
covariates, xy,, are unobserved, D = (D1,...,Dy)" is a vector of M dummy
variables that indicates in which intervals the values of covariate x; fall, b =
(bo,...,bar) T is a vector of the M + 1 boundaries of the M intervals of co-
variate zj with by < by < ... < by—1 < by, m* € {1,..., M} is an ar-
bitrary chosen interval that is used as ‘base’ interval in the regression, and
B=(Bos-sBr—1,Brr1,- -, Br) T and 6 = (01, o, Gme—1, 0 g1, 0r) | are
vectors of K and M — 1 unknown coefficients, respectively. For convenience
of further calculations, we define the (non-estimated) coefficient for the ‘base’
interval to be zero, i.e., ,,« = 0.

11



To derive the semi-elasticity of the ‘unknown’ continuous kth covariate:

_OPr(Y =p|X =1x)
o al‘k

€L Tk, (16)
we calculate the effect of an increase of the kth covariate above each inner
boundary to the next higher interval on the probability of Y =1, i.e.:

epm = Pr(Y = 1)by, <z < bpy1) — Pr(Y = 1|by—1 < a2 < biy) (17)
Vm=1....,M—1

and the approximate proportions of observations at which the kth covariate will
increase above an inner boundary if the kth covariate increases by one percent
around each of these boundaries (i.e., the proportions of observations in the
intervals +0.5% around each inner boundary assuming a uniform distribution
of the values of the kth covariate within each interval):

Prem A 0.005 - by ——"—— 40.005 - byt Y =1,..., M —1, (18)
bm - bm—l bm+1 - bm

where s, is the proportion of observations that are in the mth interval, i.e.,
bm—1 < z < by,. Finally, we can calculate the approximate semi-elasticity by:

M-1
€L X 100 - Z €km * Pkm (19)
m=1
e b s s
km *Um m m-+1
~ 20
m=1 2 (bm - bm,—l + bm+l - bm) ( )
M-1
~ Z ClmWm (21)
m=1

. _ bm Sm Sm+1
with w, = 5 (bm_bm1+bm+l_bm) Vvm=1,...,.M (22)
so that this semi-elasticity can be interpreted in the same way as the semi-
elasticity defined in Section 4, i.e., it indicates the approximate increase in the
probability of Y = 1 (in percentage points) that is caused by a one percent
increase of the covariate xy.

Table 4 presents the equations for calculating the semi-elasticities of interval-
coded covariates for all six estimation methods covered in this article.

To demonstrate how to calculate the semi-elasticity of the interval-coded
variable age with regard to a married woman’s probability to participate in
the labour force, we estimate equation (1) as a logistic regression with age as
interval-coded covariate. We create four intervals, 30-37, 3844, 45-52, and
53-60 years, and we use the third interval (45-52 years) as ‘base’ interval in the
regression analysis.” The results of this estimation are presented in Table 5.

Using the vector of coefficient estimates that can be obtained from Table 5
(coef (estLogitInt)) and a vector with the sample means of the covariates
kids and educ and the proportions of observations in the three age intervals
included in the regression (xMeantInt), one can calculate the semi-elasticity of
the covariate age using function urbinElaInt:

9The R code for estimating this model is available in Appendix Section C.3.
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urbinElaInt( coef (estLogitInt), xMeanInt, xPos = c( 3, 4, 0, 5 ),
xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "logit" )

#i# semEla stdEr
## -0.3860892 NA

Argument xPos indicates the positions of the four age intervals (in ascending
order) in the vectors coef (estLogitInt) and xMeantInt, where a zero indicates
the position of the reference interval that was not included in the regression and,
thus, is not included in coef (estLogitInt) or xMeantInt. Argument xBound
indicates the five boundaries of the four intervals. As the coefficients are derived
from a logistic regression, we set argument model equal to "logit". The semi-
elasticity based on the logistic regression with age as interval-coded covariate
indicates that the probability that a woman is in the labour force decreases,
ceteris paribus, by 0.39 percentage points if her age increases by one percent.

5.2 Approximation of standard errors

An approximate standard error of the semi-elasticity of interval-coded covariates
can, again, be obtained by using the Delta method (equation 13). The gradient
vectors of the semi-elasticities with respect to the coefficients, de,/0(BT6T)T,
for the various regression models are presented in Appendix Section A.3. Argu-
ment allCoefVcov of function urbinElaInt can be used to specify the variance-
covariance matrix:

urbinElaInt( coef (estLogitInt), xMeanInt, xPos = c( 3, 4, 0, 5 ),
xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "logit",
allCoefVcov = vcov(estLogitInt) )

#i# semEla stdEr
## -0.3860892 0.0972512

As most studies do not report the variance-covariance matrix, we repeat the
above calculation with providing only the standard errors so that urbinElaInt
sets all covariances to zero:

urbinElaInt( coef (estLogitInt), xMeanInt, xPos = c( 3, 4, 0, 5 ),
xBound = c( 30, 37.5, 44.5, 52.5, 60 ), model = "logit",
allCoefVcov = sqrt(diag(vcov(estLogitInt))) )

## semEla stdEr
## -0.3860892 0.1124600

In this empirical example—as in most of our other empirical tests—setting
the covariances to zero resulted in a slight overestimation of the standard error
and we did not find a way to get better approximations than with just setting
the covariances to zero. As setting the covariances to zero usually results only
in a slight overestimation of the standard errors, we consider this approximation
of the standard errors (which are often anyway only used as weighting factors)
as generally suitable for meta-analyses.
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6 Effects of continuous covariates when they
change between intervals

6.1 Effect size

In this sections, we consider the case where the user wants to compare effects of
an interval-coded covariate on the probability of Y = 1. We suggest a procedure
that uses the results of studies that use the covariate of interest in its continuous
form to calculate the effect of this covariate when it switches from one reference
interval to another interval.

We start out with a regression equation where the covariate of interest, xy,
is included as a linear term:

K
PriY=1X=2)=g (ﬂo + Zﬁk%) (23)
k=1

We suggest to derive the (approximate) effects of x; on Y, if this covariate
changes between M > 2 discrete intervals, e.g., from a ‘reference’ interval r to
an interval of interest [, by:

Ek,lr = PI’(Y = 1|bl,1 <xp < bhl‘,k) (24)
—Pr(Y =1|b,—1 < xp <bp,z_g)

=g|Bo+ Z Bjz; + BeExk|bi—1 < xr < by (25)
je{l KW\k
—g|Bo— Z Bix; + PrExk|br—1 < x1 < by
jefl, . KWk
=g|Bo+ D Bixj+BuIn (26)
Je{l, . KW\k

—g|Bo— D Biwi+ Bk |,

je{1,....K}\k

where z_p, = (z1,...,Tk—1, Tht1, {EK)T is a vector of all covariates except for xy,
bog < by < ...<bpy_1 < by are the boundaries of the intervals of covariate xy,
and

Tpm = Elzg|bm—1 < zp <bp|VYm=1,....M (27)

are the expected values of covariate x; within specific intervals. If the expected
values of covariate xj for specific intervals are unknown, it may be appropriate
to approximate them by the mid-points of the respective interval boundaries
(e.g., if the covariate x has approximately a uniform distribution between the
respective interval boundaries):

bm—l + bm

Tpm ¥ TV m =1, M. (28)
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If the model specification additionally includes a quadratic term of the co-
variate k, e.g., 41 = 77, equations (24) to (26) change to:

Eppr = Pr(Y = 1|bi—1 < 2 < by, g k1) (29)
—Pr(Y =1|bp_1 <@ < by T_py1)

g </3o Y s (30)

je{1,.... K}\{k,k+1}

+ BrE[zrbi—1 < wp < b)) + B E[xilbi_y < xp < bl])

- 9(50 + Z Bix;

je{1,.... K}\{k,k+1}

+ BrEwg|br—1 < xp < by] + Brp1 Elwg|br—1 < mp < br])

=g | Bo+ > Bjaj + BeTri + Brarwd, (31)
Jje{1,.... K}\{k,k+1}

—g | B+ > Bixj + BuZkr + Ber12y, |
Je{l, K\ {k k+1}

with
23 = Ei|bm1 < xr <by]Vm=1,...,M. (32)

If E[z3|bm-1 < x < by is unknown, it may be appropriate to approximate
it by assuming that covariate x; has approximately a uniform distribution be-
tween each pair of subsequent interval boundaries so that its probability density
function between boundaries b,,—1 and b, is 1/(by, — bp—1):

b,
m 1
2 A — | 33
Pl /bml T bm - bmfl o ( )
b
1 . 1 m
_ 1 34
3 xk bm - bm71 bm.fl ( )
1 1 1 1
==-p ——  _Zp 35
3 ™ by —bm_1 3 ™ b, — b (35)
L el Vm=1,...,M (36)
_S(bm—bmfl) m=1,..., M.

Table 6 presents the equations for calculating the effect sizes of continuous
covariates when they change between intervals for all six estimation methods
covered in this article.

The effect of a continuous covariate when it changes between intervals can
be calculated with package urbin by using function urbinEffInt. In our ex-
ample, we use the results of the probit regression model with variable age as a
linear covariate as well as with age as a linear and a quadratic covariate that
we already used as example in Section 4 with estimation results presented in
Table 3. Based on these estimation results, we calculate the effect of covariate
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age on the probability of women’s participation in the labour force as if age
was an interval-coded covariate and changes from the 30-44 years (reference)
interval to the 53—-60 years interval. We do this both for the model with age as
linear covariate:

urbinEffInt( coef (estProbit), xMean, xPos = 3,
refBound = c( 30, 44 ), intBound = c( 53, 60 ),
model = "probit" )

## effect stdEr
## -0.1662336 NA

and for the model with age as a linear and quadratic covariate:

urbinEffInt ( coef (estProbitQ), xMeanQ, xPos = c( 3, 4 ),
refBound = c¢c( 30, 44 ), intBound = c( 53, 60 ),
model = "probit" )

## effect stdEr
## -0.2918354 NA

The results based on the two estimated models indicate that the probability
that a woman is in the labour force is, ceteris paribus, 17 percentage points or
29 percentage points, respectively, lower for women aged 53-60 years than for
women aged 30-44 years.

6.2 Approximation of standard errors

As for the semi-elasticities, an approximate standard error of the effect of
interval-coded covariates can be obtained by using the Delta method (equa-
tion 13). Appendix Section A.4 presents the gradient vectors of the effects
with respect to the coefficients, dFE} ;,./08, for the various regression models.
Argument allCoefVcov of function urbinEffInt can be used to specify the
variance-covariance matrix:

urbinEffInt ( coef (estProbit), xMean, xPos = 3,
refBound = c( 30, 44 ), intBound = c( 53, 60 ),
model = "probit", allCoefVcov = vcov(estProbit) )

## effect stdEr
## -0.16623364 0.05243387

urbinEffInt ( coef (estProbitQ), xMeanQ, xPos = c( 3, 4 ),
refBound = c( 30, 44 ), intBound = c( 53, 60 ),
model = "probit", allCoefVcov = vcov(estProbitQ) )

## effect stdEr
## -0.29183541 0.06370879

Given that most studies only report standard errors rather than the (full)
variance-covariance matrix, we repeat the above calculations with providing
only the standard errors so that urbinEffInt sets all covariances to zero:
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urbinEffInt ( coef (estProbit), xMean, xPos = 3,
refBound = c( 30, 44 ), intBound = c( 53, 60 ),
model = "probit", allCoefVcov = sqrt(diag(vcov(estProbit))) )

#i# effect stdEr
## -0.16623364 0.05723648

urbinEffInt ( coef (estProbitQ), xMean], xPos = c( 3, 4 ),
refBound = c( 30, 44 ), intBound = c( 53, 60 ),
model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))) )

## Warning: In urbinEffInt(allCoef = coef (estProbitQ), allXVal
= xMeanQ, xPos = c(3, 4), refBound = c(30, 44), intBound = c(53,
60), model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))))

## the returned standard error is likely largely upward biased
and, thus, in most cases meaningless; you can provide the full
covariance matrix via argument ’allCoefVcov’ to avoid this bias
or use argument ’xMeanSd’ to substantially reduce this bias

## effect stdEr
## -0.2918354 0.6571220

While replacing the (frequently unknown) covariances by zeros usually has
only a minor effect on the standard error when the model has only a linear term
of the covariate of interest, the standard errors based on models with linear and
quadratic terms of the covariate of interest are usually largely upward-biased
if the covariances are all set to zeros. However, approximating the covariance
between the coefficient of the linear term and the coefficient of the quadratic
term as explained in Section 4.2 usually gives sufficiently precise approximations
of the standard error. Function urbinEffInt applies this procedure, if the user
provides the mean value and the standard deviation of the covariate of interest
through argument xMeanSd:

urbinEffInt ( coef (estProbitQ), xMeanQ, xPos = c( 3, 4 ),
refBound = c( 30, 44 ), intBound = c( 53, 60 ),
model = "probit", allCoefVcov = sqrt(diag(vcov(estProbitQ))),
xMeanSd = c( mean( Mroz87$age ), sd( Mroz87$age ) ) )

## effect stdEr
## -0.29183541 0.07351239

7 Grouping and re-basing effects of categorical
and interval-coded covariates

7.1 Effect size

In cases where the user is interested in comparing effects of categorical or
interval-coded covariates on a binary dependent variable, the user will frequently
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encounter studies, where the encoding of the covariate of interest differs between

studies, e.g., the studies use different reference categories and/or different cat-

egorisations.'® In this section, we suggest an approach to obtain comparable

effect sizes by streamlining the categories and unifying the reference category.
We consider a regression model:

Priy=1UX=x)=g|fo+ Y. Biz+ > SmDm | (37)

Je{l,...K}\k me{l,...,M}\m*
1 if m
D, = B s TV 4 (38)
0 otherwise

where ¢() is again a generic link function and the covariate of interest, xg,
is a categorical variable with M mutually exclusive categories cy, ..., cy with
em N =0V m # 1, category cp,~ is used as reference category, and all other
variables and coefficients are defined as above. For notational simplification
of the following derivations, we define the (non-estimated) coefficient of the
reference category to be zero, i.e., §,, = 0.

We want to obtain the effect of a change of covariate x; from a reference
category c; to a category of interest c;:

Ey 1 =Pr(Y =1z € ¢f) — Pr(Y = 1jz, € ¢), (39)
where categories ¢} and/or ¢ may comprise multiple original categories
ci,--.,cp- Vectors v, = (vp1,...,va) and v; = (vy1,...,v) " indicate,
which of the original categories cy,...,cy are included in categories ¢y and cf,
respectively:

1 ife, €ch
Upm = Y m=1,...,M;n € {r,1} (40)
0 ifey,é¢ch

In the following, we derive the effect of a change of covariate z from a ref-
erence category ¢ to a category of interest ¢, Ey ;- as defined in equation (39):

Epir =Pr(Y = 1lzg € ¢f) — Pr(Y = 1|z € ) (41)
M

=g | Bo+ Z Bix; + Z dmE[Dm|zk € ¢f] (42)
GE{L, . KY\k m=1

M
—g|Bo+ D Bizi+ Y mE[Dpluk € ]

je{l,....K\k m=1
M
=g|Bo+ Y. Bixj+ D mDm (43)
je{l,....K\k m=1

M

je{1,.. . K}\k m=1

10In order to simplify the notation, we use the term ‘categorical variables’ throughout
this section although all derivations in this section not only apply to (unordered or ordered)
categorical variables but equally apply to interval-coded variables.
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with

Dyn = E[Dp |2 € 7] (44)

e )

- s (0
SmUnm

- 224:1 SkUnk e

Vm=1,...,M;n € {rl},

where s,, = E[D,,] YV m = 1,..., M is the share of observations with covari-
ate xy being in category c¢,,.

Table 7 presents the equations for grouping and re-basing effects of categor-
ical and interval-coded covariates for all six estimation methods covered in this
article.

To demonstrate how to group and re-base a categorical covariate, we use the
results of the logistic regression model with age as interval-coded covariate that
we already used as example in Section 5 with estimation results presented in
Table 5. In this estimation, covariate age is coded as four intervals: 30-37 years,
38-44 years, 45-52 years, and 53—60 years, where the interval 45-52 years is
used as ‘base’ interval. In our example, we apply function urbinEffCat to
group and re-base the categories to calculate the effect of age changing from
the 30-44 years (reference) interval to the 5360 years interval:

urbinEffCat ( coef (estLogitInt), xMeanInt, xPos = c( 3:5 ),
xGroups = c( -1, -1, 1, 0 ), model = "logit" )

#i# effect stdEr

## -0.2550292 NA

Argument xPos indicates the positions of the categories of variable age in the
coefficient vector and in the vector of mean values, argument xGroups indicates
how the four original categories should be grouped and re-based, and all other
arguments are defined as explained for the other functions of the urbin package.
Argument xGroups must have one element for each category that was used in the
estimation, where the categories are in the same order as indicated by argument
xPos and the last element is the ‘base’ category, i.e., in our case, the elements
of argument xGroups must correspond to the order: 30-37 years (first element
of xPos), 38-44 years (second element of xPos), 53—60 years (third element of
xPos), and 45-52 years (reference category). Each element of argument xGroups
must be a —1 (indicating that the category should belong to the new reference
category), a 1 (indicating that the category should belong to the new category of
interest), or a 0 (indicating that the category should neither belong to the new
reference category nor to the new category of interest). As the new reference
category comprises both the 30-37 years interval and the 38-44 years interval,
the values of the first two elements of argument xGroups must be —1. As the
new category of interest is the 53-60 years interval, the value of the third element
of argument xGroups must be 1. As the old reference interval, 45-52 years, is
neither in the new reference category nor in the new category of interest, the
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value of the fourth element of argument xGroups must be 0. The calculated
effect size indicates that the probability that a woman is in the labour force is,
ceteris paribus, 26 percentage points lower for women aged 53—60 years than for
women aged 30-44 years.

7.2 Approximation of standard errors

An approximate standard error of the effect of a grouped and re-based covariate
can, again, be obtained by using the Delta method (equation 13). Appendix
Section A.5 presents the gradient vectors of the effects with respect to the
coefficients, OFy;,./0(B78"7)", for the various regression models. Argument
allCoefVcov of function urbinEffCat can be used to specify the variance-
covariance matrix of the estimated coefficients:

urbinEffCat ( coef (estLogitInt), xMeanInt, c( 3:5 ),
c( -1, -1, 1, 0 ), vcov(estLogitInt), model = "logit" )

#i# effect stdEr
## -0.25502923 0.06231656

As most studies do not report the variance-covariance matrix, we repeat
the previous calculation with providing only the standard errors so that
urbinEffCat sets all covariances to zero:

urbinEffCat ( coef (estLogitInt), xMeanInt, c( 3:5 ),
c( -1, -1, 1, 0 ), sqrt(diag(vcov(estLogitInt))),
model = "logit" )

#i# effect stdEr
## -0.25502923 0.06958641

Similarly to Section 5, setting the covariances to zero usually results in a
slight overestimation of the standard errors. As these overestimations are usu-
ally small and the standard errors are often anyway only used as weighting
factors, we consider this approximation of the standard errors to be generally
suitable for meta-analyses.

8 Non-binary categorical dependent variables

As explained in Section 3, it can be possible to make results of studies with
non-binary categorical dependent variables comparable to results of studies with
binary dependent variables, if the categories of the (non-binary) dependent vari-
able can be grouped into two groups that correspond to the two outcomes of
the binary dependent variable in the other studies.

In order to demonstrate this, we use an ordered probit regression with age
as linear and quadratic covariate and a multinomial logistic regression with age
as interval-coded covariate as examples.'! The estimation results of these two
models are presented in Tables 8 and 9, respectively.

HThe R code for estimating these two models is available in Appendix Sections C.4 and C.5,
respectively.
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We combine the two outcomes ‘part-time labour force participation’ and
‘full-time labour force participation’ to one joint outcome category so that we
obtain a binary outcome: ‘no labour force participation’ and (part-time or full-
time) 'labour force participation’. For ordered probit models, the negative value
of the break point that separates the two groups of categories corresponds to
the intercept of a binary probit model (see Section 3). Hence, in our example,
the relevant break point is the one between the ‘no labour force participation’
category and the ‘part-time labour force participation’ category, which has an
estimated value of 3.13 (see Table 8). When applying one of the functions of
the urbin package to ordered probit models, argument iPos must indicate the
position of this break point in the vector of coeflicients, while all other break
points must be ignored. The element in the vector of the values of the covari-
ates that corresponds to the relevant break point (as indicated by argument
iPos) must be minus one, in order to take into account that the intercept of a
corresponding binary probit model must be replaced by the negative value of
the relevant break point of an ordered probit model. We set argument model to
"oprobit" to indicate an ordered probit model, while all other arguments are
used as explained above:

urbinEla( coef (summary(estOProbitQ)) [-6,1], c( xMeanQ[-11, -1 ),
xPos = ¢c( 2, 3 ), iPos = 5, model = "oprobit",
vcov(estOProbitQ) [-6,-6] )

## semEla stdEr
## -0.3467696 0.1201219

The calculated semi-elasticity indicates that the probability that a woman
is at least part-time in the labour force decreases, ceteris paribus, by 0.35 per-
centage points if her age increases by one percent.

In the multivariate logistic regression, ‘no labour force participation’ is used
as the reference category of the dependent variables, while ‘full-time labour
force participation’ and ‘part-time labour force participation’ are used as first
alternative category and second alternative category, respectively (see Table 9).
When applying one of the functions of the urbin package to a multinomial lo-
gistic regression, argument yCat must indicate the categories of the dependent
variable & that correspond to a binary outcome of one. All other categories
are considered to correspond to a binary outcome of zero. In argument yCat, a
zero indicates the reference category, while a one, two, or three, etc. indicates
the first, second, or third, etc. alternative category, respectively. As the first
and second alternative categories comprise the binary outcome of one in our
example, i.e., & = {1,2}, argument yCat must be a vector with two values:
one and two. We set argument model to "mlogit" to indicate a multinomial
logistic regression, while all other arguments are used as explained above:

coefPermuteInt <- c( seq( 1, 11, 2 ), seq( 2, 12, 2 ) )
urbinElalInt ( coef (estMLogitInt) [coefPermuteInt], xMeanInt,
c(3,4,0,5), c(30, 37.5, 44.5, 52.5, 60 ), model = "mlogit",
vcov(estMLogitInt) [coefPermutelInt,coefPermuteInt],
yCat = c( 1, 2 ) )

#i# semEla stdEr
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## -0.39395280 0.09774856

As the functions in package urbin expect that the coefficients of multi-
nomial logistic regressions are grouped for each category of the dependent
variable (i.e., ﬂO,lw~'»5[(,1750,27~~«7ﬁK,2;~«~750,P7~'~75K,P)7 while the
coefficients of models estimated by mlogit are grouped for each covariate
(i.e., Boay---sPBop,B11s---301,Ps---sBK1,---,BKk,p), we created a vector
coefPermutelInt that reorders the coeflicients and their variances and covari-
ances so that they are ordered as expected by package urbin. The semi-elasticity
indicates that the probability that a woman is either part-time or full-time in
the labour force decreases, ceteris paribus, by 0.39 percentage points if her age
increases by one percent.

9 Conclusion

The direct comparison of coefficients from regression analyses from different
studies is often meaningless because the studies use different estimation meth-
ods or different units of measurements or different encodings of the variables
of interest. In this article, we propose straightforward and easy-to-implement
approaches to unify results from regression analyses with binary dependent vari-
ables or categorical dependent variables that can be transformed to binary vari-
ables.

We have implemented all suggested approaches in the R package urbin. This
article uses this package to demonstrate how regression results from differently
specified regression analyses can be unified by calculating semi-elasticities of
continuous and interval-coded covariates, by calculating effects of continuous
covariates when they change between intervals, and by grouping and re-basing
effects of categorical and interval-coded covariates. We show how to obtain
valid approximations for the calculated standard errors of the semi-elasticities
and effect sizes without information about the variance-covariance matrix of the
coeflicients, e.g., for cases where the user wants to use the standard errors as
weighting factors in a meta-analysis.
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Table 3: Probit regression results with age as linear and quadratic covariate

Dependent variable:

lfp
(1) (2)
Constant 0.09 —3.89***
(0.44) (1.39)
kids —0.13*** —0.15***
(0.04) (0.04)
age —0.02*** 0.17%**
(0.01) (0.06)
I(age™2) —0.002***
(0.001)
educ 0.10*** 0.10***
(0.02) (0.02)
Observations 753 753
Log Likelihood —493.99 —489.38
Akaike Inf. Crit. 995.98 988.76
Note: *p<0.1; **p<0.05; ***p<0.01
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Table 5: Logistic regression results with age as interval-coded covariate

Dependent variable:

Ifp
Constant —1.45***
(0.45)
kids —0.22%**
(0.06)
age30.37 0.32
(0.21)
age38.44 0.26
(0.22)
ageb3.60 —0.75%**
(0.25)
educ 0.16***
(0.04)
Observations 753
Log Likelihood —491.30
Akaike Inf. Crit. 994.59

Note:

*p<0.1; **p<0.05; ***p<0.01
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Table 8: Ordered probit regression results with age as linear and quadratic
covariate

Dependent variable:

1fp3
kids —0.18***
(0.04)
age 0.16%**
(0.02)
I(age™2) —0.002***
(0.0003)
educ 0.07***
(0.02)
no|part 3.13***
(0.001)
part|full 3.87**
(0.05)
Observations 753
Note: *p<0.1; **p<0.05; ***p<0.01
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Table 9: Multinomial logistic regression results with age as interval-coded co-

variate

Dependent variable:

1fp3
full:(intercept) —1.73***
(0.53)
part:(intercept) —2.62%**
(0.55)
full:kids —0.42%**
(0.08)
part:kids —0.06
(0.07)
full:age30.37 0.57**
(0.25)
part:age30.37 0.09
(0.25)
full:age38.44 0.49*
(0.26)
part:age38.44 0.04
(0.27)
full:age53.60 —0.75%*
(0.30)
part:age53.60 —0.76**
(0.33)
full:educ 0.15%**
(0.04)
part:educ 0.19***
(0.04)
Observations 753
R2 0.04
Log Likelihood —778.06
LR Test 66.03*** (df = 12)
Note: *p<0.1; **p<0.05; ***p<0.01
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A Gradients for calculating approximate stan-
dard errors

A.1 Gradients of semi-elasticities of continuous covariates
A.1.1 Linear probability model

If the regression equation includes only a linear term of the covariate of interest,
the gradients are:

Oer, )
e,

If the regression equation additionally includes a quadratic term of the co-
variate of interest, there is one additional gradient:

=2 . (50)

A.1.2 Probit regression

If the regression equation includes only a linear term of the covariate of interest,
the gradients are:

8ek

gp, = XPBerzVic {0 K}\k (51)
37;;1 =-X'B ez + ¢(X'B) xy, (52)

with zg = 1.
If the regression equation additionally includes a quadratic term of the co-
variate of interest, there is one additional gradient:

c'?ek

= —X'Bep i +2¢(X'B)2i. (53)
0Bk+1

A.1.3 Logistic regression

If the regression equation includes only a linear term of the covariate of interest,
the gradients are:

Oep, 2 exp (X'B) o

de (1 2eotXB)) _eo0C)

GER T+exp(X'8)) 7 (14 exp (X78))°
with g =1 (see also [13]).

If the regression equation additionally includes a quadratic term of the co-
variate of interest, there is one additional gradient:

e, (2 exp(X’B)) 2 exp(X'B)
s (l e (X8)) " ep(x8)

T (55)

(56)
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A.1.4 Multinomial logistic regression

If the regression equation includes only a linear term of the covariate of interest,
the gradients are:

o Oex

*Z N ERy o0, Koe{L,...,P}\p’ (57)
85]’,0 peP aﬁj,o

6*

with a;’p = (—WPEZ’O — o€k p + Aoﬁpez,p) zj (58)
J,0
Vjie{0,....,K}\k;p=1,...,P;oe{1,...,P}\p",

Oex

7{95}:}) = (—Tp€ho — Tobhp — TpTo + Doy (mp + €4,) ) Tk (59)

Vp=1,...,P;0e {l,...,P}\ p",
zo = 1, and A,, denoting Kronecker’s Delta with A,, = 1 V o = p and
Ayp=0Vo0#p.
If the regression equation additionally includes a quadratic term of the co-
variate of interest, there are P — 1 additional gradients:

Oy, » e p
P NT TR e 1. P\ p 60
= g Vel P (60)
. 862717 _ * * * 2
with —F— = (—mpet , — To€ , — 2TpTo + Do (27 + €1 ,) ) T (61)
OBrs1.0 , , ,

Vp=1,...,P;oe{l,...,P}\p"

A.2 Simplified gradients of semi-elasticities of continuous
covariates

A.2.1 Linear probability model

As almost all elements of the gradient vector are zero (see section A.1.1), almost
all off-diagonal elements of the variance-covariance matrix of the estimated co-
efficients are anyway ignored when the Delta method is applied to calculate the
approximate standard error of the semi-elasticity. Therefore, we do not need to
obtain ‘simplified’ gradients in order to avoid biases due to missing information
about the off-diagonal elements of the variance-covariance matrix.

A.2.2 Probit regression

In order to improve the approximation of the standard errors when the off-
diagonal elements of the variance-covariance matrix of the estimated coefficients
are unknown, we simplify the derivation of the gradients by ignoring that the
‘weighting factor’ ¢(-) in the equation for calculating the semi-elasticities (see
Table 2) depends on the coefficients. If the regression equation includes only a
linear term of the covariate of interest, the ‘simplified’ gradients are:

86k

a—ﬁjz(JVje{O,...,K}\k (62)
6€k ’
o5, = oX'B) i (63)
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If the regression equation additionally includes a quadratic term of the co-
variate of interest, there is one additional ‘simplified’ gradient:

8ek
OPr+1

=2 ¢(X'P) xj. (64)

A.2.3 Logistic regression

In order to improve the approximation of the standard errors when the off-
diagonal elements of the variance-covariance matrix of the estimated coefficients
are unknown, we simplify the derivation of the gradients by ignoring that the
‘weighting factor’ exp(-)/(1 — exp(-))? in the equation for calculating the semi-
elasticities (see Table 2) depends on the coefficients. If the regression equation
includes only a linear term of the covariate of interest, the ‘simplified’ gradients
are:

Oer, )
a—ﬂj_ov]e{o,...,l(}\k (65)
O, exp(X'B) - (66)

9Bk (1+exp(X'B))?

If the regression equation additionally includes a quadratic term of the co-
variate of interest, there is one additional ‘simplified” gradient:

e, 9 exp (X'B) 2

s~ (1+exp(X'B)° "

(67)

A.2.4 Multinomial logistic regression

In order to improve the approximation of the standard errors when the off-
diagonal elements of the variance-covariance matrix of the estimated coeflicients
are unknown, we simplify the derivation of the gradients by ignoring that the
‘weighting factors’ mp;p = {1,..., P} and m,;0 = {1, ..., P} in the equation for
calculating the semi-elasticities (see Table 2) depend on the coefficients. If the
regression equation includes only a linear term of the covariate of interest, the
‘simplified’ gradients are:

o e
kP _ —kryi—0,... Kioe{l,...,P}\p* (68)
6ﬁj,o peP? aﬁj,o
o€t
withWk’p:0Vj€{0,...,K}\k;p:17...7P;oe{1,...,P}\p*, (69)
j,0
Oes
8;’[):(77rp7ro+Ao7p7rp)kap:1,...,P;0€{1,...,P}\p*, (70)
k,o

and A, , denoting Kronecker’s Delta with A, , =1Vo=pand A, , =0V o #

.
If the regression equation additionally includes a quadratic term of the co-
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variate of interest,

with

there are P — 1 additional gradients:

. e
ey — P yoe{l,...,P}\p*

aﬂk-i—l,o pEP aﬂk—i—l,o

«
86k’p

= (—2mpmy + 24, p7p) xi
8 k+1,0

Vp=1,...,Pioe{l,...,P}\p".

A.3 Gradients of semi-elasticities of interval-coded covari-

ates

A.3.1 Linear probability model

The gradients are:

g;’;—owe{o,...,f{}\k

8ek_

a5, "

O oy —wm Ym € {2, M~ 1} \ m*
9om

3ek

85M:wM_1

A.3.2 Probit regression

The gradients are:

Oex
ap;
86k
26,
86k

9

86k

001

=T 2_: (Dmg1(:) = Im () wm Vi €{0,..., K} \ k

M—1
m=1

= —¢1() wy

= () (W1 —wy) Vme{2,...,M -1} \m*

=om(’) wym-1

je{1,....K}\k

With¢m5¢(ﬁ0+ Z ,le‘j—F(sm) Vvm=1,....M

and xg = 1.
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A.3.3 Logistic regression

The gradients are:

%ﬂglﬂ“ exprii()  exp,() w

aB; jmz_:l<<1+e}<pm+1(-))2 (1+expm(-))2) "
Vjie{o,...,K}\ k

% _ expy (+) w

a6, (1 +expy())2

Oe.  exp,,(°) w Cw m B m*

B~ (L exp, ()2 (Vmmt ~m) Y € 2o M=

Oy, B expy(°) w

oy (I+expy ()2 Mt

with o =1 and exp,,,;m = 1,..., M as defined in Table 4.

A.3.4 Multinomial logistic regression

The gradients are:

O€y,
aﬁj,o

with

*
86,671,

0010

*
8ek’p

85771,0

*
5'ek}p

aaM,o N

Tp,m =

B¢t
3 aek"pVje{O,...,K}\k‘;oe{1,...,P}\p*

peEP 1,0

862]9 *
> s ¥me{l . MI\moe{l,....P}\p
pEP m,o

M-1

Lj E : (Wp,mﬂo,m — Tp,m+1To,m+1
m=1

— Dop (Tpm — Tp,m+1) )wm

Vjie{0,....,.K}\k;sp=1,...,P;oe{l,...,P}\ p",
(7Tp,17ro,1 *Ao,p 7Tp,l)rwl
Vp=1,...,P;oe {l,...,P}\ p~,

(7Tp,m7ro,m - Ao,p ’/Tp,m) (wm - wmfl)

(89)

(90)

Vme{2,....M -1} \m*;p=1,...,P;oe{l,...,P}\p",

— (Tp,MTo, 0 — Do Tp, ) War—1
Vp=1,...,Pioe{l,...,P}\p",
eXPyy

—mP yp=1,...,Pim=1,...,.M
P ) s Ly ) ’ ’
Zo:lexpm,o

zo =1, and exp,, ,;m=1,...,M;p=1,..., P as defined in Table 4.
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A.4 Gradients of effects of continuous covariates when
they change between intervals

A.4.1 Linear probability model

If the regression equation includes only a linear term of the covariate of interest,
the gradients are:

agg’lT:OVje{O7...7K}\k (93)

j

OFp1r  _ _

TR Tt — T 4
95, Tpy — T (94)

If the regression equation additionally includes a quadratic term of the co-
variate of interest, there is one additional gradient:

OFEk 1  —

=22 — 12 . 95
861@-&-1 kl kr ( )

A.4.2 Probit regression

If the regression equation includes only a linear term of the covariate of interest,
the gradients are:

OBt _ (5 gy, g € {0.... K} \ k (96)
0B;
ag;:r — 1 Byt — by Thr ®7)

with ¢, = ¢ | Bo + Z Bjrj + BrTrn | Y€ {l,r} (98)

jell,... . KW\k

and zg = 1.
If the regression equation additionally includes a quadratic term of the co-
variate of interest, we have:

dn=0 | Bo+ Z Bizj + BeZrn + Brt12%kn (99)

je{1,.... K}\{k,k+1}
Vne{lr}

and there is one additional gradient:

= ¢ 2%k — by Ty (100)
1
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A.4.3 Logistic regression

If the regression equation includes only a linear term of the covariate of interest,
the gradients are:

aE‘k,lr _ eXpl(') expr(') ) .
o8 <<1 Tom()? <1+expr<->>2> 7V A0 KRR (101)
OLpyr _ exp()  _  exp()
9B (e X [T texp, ()2 ™ (102)
with exp,, = exp | Bo + Z Bijx; + Brlin | Y€ {l,r} (103)

je{l,... . K\k

and z¢g = 1.
If the regression equation additionally includes a quadratic term of the co-
variate of interest, we have:

exp,, = exp | Bo + Z Bixj + BuZhn + Bet122kn (104)
je{l,. . K3\ {k.k+1}

Vne{lr}
and there is one additional gradient:

6Ellf,lr o eXpl(-) - _expir(')f
Bt~ Wt om (P "8 " Trem, o~ (19

A.4.4 Multinomial logistic regression

If the regression equation includes only a linear term of the covariate of interest,
the gradients are:

Eyir OE} .
w:ZMw:o,...,ff;oe{17...,P}\p* (106)
aﬁ'o 8/8'0
> peEZ 7>
oL
—kirp (Wp’r Tonr — Tpl ol — Dop (Mpr — Tp1) )(Ej (107)
aﬂj,o
Vjie{0,....K}\k;p=1,...,P;0e{1,...,P}\p"
oL
hlrp = (WpAr To,r — Ao,p 7Tp,r) Trr — (7Tp,l To,l — Ao,p 7Tp7l) Tl (108)
aﬂk,o l
Vp=1,...,Pioe{l,...,P}\p"
€xXp (BO, + Z K kﬁ', z; +ﬁk, -i'k,n)
with . = P SIE e KRR T T (109)

3 _
2 o—1€XP (50,0 + Zje{17...7K}\k BjoTj+ 5k,o$k,n)
Vp=1,...,P;ne{l,r},

zo = 1, and A,, denoting Kronecker’s Delta with A,, = 1 V o = p and
Ayp=0Vo0#p.
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If the regression equation additionally includes a quadratic term of the co-
variate of interest, we have:

exp (BO,p + Zje{l,...,K}\{k,kH} BjpTi + BrpThn + Bk-&-l,p?km)

Tpn =—p - —
201 XP(Bo,o + 2 jequ,.... kp\(koh+1} BivoTi + BroThm + Bra1,08%k,n)
(110)
Vp=1,...,P;ne{l,r}
and there are P (P — 1) additional gradients:
OFEk ir _ -
L — (T Tour = Doy Tpr) Ty — (Tpt Tot = Doy Tpa) Ty (111)
8Bk-‘rl,o

Vp=1,...,Pioe{l,...,P}\p".

A.5 Gradients of grouped and re-based effects of categor-
ical and interval-coded covariates

A.5.1 Linear probability model

The gradients are:

aE’“’”:ov]'e{o,...,K}\k (112)
9B;
855’“““ =Dy — Dpr Ve {1,...,M}\ m* (113)

A.5.2 Probit regression

The gradients are:

OEL 1, .
= @) —on(Da; ¥ie 0. K}\k (114)
J

%:@(.) Dot — ¢0(-) Dy YV € {1,..., M} \ m* (115)

M
with oo () =0 [ Bo+ D Bizj+ Y 6mDmn (116)

je{1,....K}\k m=1

Vne{rl}

and zg = 1.
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A.5.3 Logistic regression
The gradients are:

a-Ek,lr _ expl(') _ expr(') Iy 117
9B; ((1+6XP1(‘))2 (1+expr('))2> ’ .

Vjied{0,....,K}\k

3E r € . exp,.(-
8;,1 _ xpy () 5 Dyt — L)Q D,y (118)
m (L+exp(")) (14 exp,())
Vme{l,...,M}\m*
M
with exp,,(-) = exp | 8o + Z Bjx; + Z OmDmn (119)
je{l,.. . KNk m=1
Vne{rl}
and xg = 1.

A.5.4 Multinomial logistic regression

The gradients are:

OB OE; .
M—Z%V]’E{O,...,K}\k;oe{1,...,P}\p* (120)

peEP 550
OFE) ir OE; .,
2 N Ry e {1, M} \m 0 € {1,..., P} \p*
aﬁj,o peP? 5m,o
(121)
OE:
with agil P = (Tp,r Toyr = Tpt Mot — Do (Tp,r — Tp 1)) (122)
J,0
vje{o,....K}\kip=1,...,P,
OE} ..
LD (1 e = B Ty) D = (1 Tt = By 1) Dt (123)
Vvme{l,....M}\m*p=1,..., P,
M
exp (50@ + Zje{l,...,K}\k BipTi + D m=1 5m,po,n)
Tpn =" p M
o1 €XP (50,0 T2 etk ks Bioi D 5m7oDm7n)
(124)
Vp=1,...,P;ne{lr},
and xg = 1.
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B Derivation of a binary probit model from an
ordered probit model

Pr(Y* = 11X =a) = Pr(Y € ", .

P
p=p*
P

p=p
P
p=p*

P
p=p*

:q,(

Pr(Y = p|X =)

P} X =)

(125)

(126)

o))

(127)

K P K
@ (up - Z&%) ~Ye (um - z%)
Jj=1 p=p* j=1

o (Np - iﬁjfﬂj)

J=1

=1

P

Y@

p=

1

p*—

1

(

(128)

K
Hp — Zﬁjxg)

Jj=1

K K
Hp — Zﬁj%) - (Mp*1 - Zﬁj%)
j=1

K
= (I) (OO) — (I) (ﬂp*l — Zﬁjxj)

:1—

:q,(

Jj=1

K
® (F‘p*l - Bjx;

j=1

K
—Hpr—1 + Zﬁj%‘

Jj=1
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C Additional R code

C.1 Loading and preparing
Loading the data set:

data( "Mroz87", package = "sampl

data

eSelection" )

Creating a dummy variable for the presence of children in the household:

Mroz87$kids <- Mroz87$kids5 + Mr

0z87$kids618

Creating dummy variables for interval-coding variable age:

Mroz87$age30.37 <- Mroz87$age >=
Mroz87$age38.44 <- Mroz87$age >=
Mroz87$aged5.52 <- Mroz87$age >=
Mroz87$ageb53.60 <- Mroz87$age >=
all.equal(
Mroz87$age30.37 + Mroz87$age38
rep( 1, nrow( Mroz87 ) ) )

30 & Mroz87$age <= 37
38 & Mroz87$age <= 44
45 & Mroz87$age <= 52
53 & Mroz87$age <= 60

.44 + Mroz87$age45.52 + Mroz87$ageb3.60,

Creating an ordered categorical variable that indicates three levels of labour

force participation:

Mroz87$1fp3 <- factor( ifelse( Mroz87$hours == 0, "no",

ifelse( Mroz87$hours <= 1300,

"part", nfall" ) )’

ordered = TRUE, levels = c( "no", "part", "full" ) )

C.2 Probit regressions wit
with age as linear and

Estimations and creating vectors with

h age as linear covariate and
quadratic covariate

mean values of covariates:

estProbit <- glm( 1lfp ~ kids + age + educ,
family = binomial(link = "probit"), data = Mroz87 )
xMean <- c( 1, colMeans( Mroz87[ , c( "kids", "age", "educ" ) 1 ) )

estProbitQ <- glm( 1lfp ~ kids +

age + I(age”2) + educ,

family = binomial(link = "probit"), data = Mroz87 )
xMeanQ <- c( xMean[ 1:3], xMean[3]~2, xMean[4] )

C.3 Logistic regressions with age as interval-coded covari-

ate

Estimation and creating a vector with

mean values of covariates:
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estlogitInt <- glm( 1fp ~ kids + age30.37 + age38.44 + ageb3.60 + educ,
family = binomial(link = "logit"), data = Mroz87 )

xMeanInt <- c( xMean[1:2], mean( Mroz87$age30.37 ),
mean( Mroz87$age38.44 ), mean( Mroz87$age53.60 ), xMean[4] )

C.4 Ordered probit regression with age as linear and
quadratic covariate

Estimation:

library( "MASS" )

estOProbitQ <- polr( 1fp3 ~ kids + age + I(age”2) + educ,
data = Mroz87, method = "probit", Hess = TRUE )

xMeanOProbit <- c( xMeanQ, -1 )

C.5 Multinomial logistic regressions with age as interval-
coded covariate

Estimation:
library( "mlogit" )
estMLogitInt <- mlogit(

1fp3 ~ 0 | kids + age30.37 + age38.44 + ageb3.60 + educ,
data = Mroz87, reflevel = "no", shape = "wide" )
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