A B C D E F G H I K L M N O P R S T U V W
pomp-package | Inference for partially observed Markov processes |
abc | Approximate Bayesian computation |
abc-data.frame | Approximate Bayesian computation |
abc-method | Approximate Bayesian computation |
abc-pomp | Approximate Bayesian computation |
accumulators | accumulators |
accumvars | accumulators |
as-csnippet | C snippets |
as-method | Coerce to data frame |
as-method | C snippets |
as.data.frame | Coerce to data frame |
as.data.frame.abcList | Coerce to data frame |
as.data.frame.bsmcd_pomp | Coerce to data frame |
as.data.frame.kalmand_pomp | Coerce to data frame |
as.data.frame.mif2List | Coerce to data frame |
as.data.frame.pfilterd_pomp | Coerce to data frame |
as.data.frame.pfilterList | Coerce to data frame |
as.data.frame.pmcmcList | Coerce to data frame |
as.data.frame.pomp | Coerce to data frame |
as.data.frame.pompList | Coerce to data frame |
as.data.frame.probed_pomp | Coerce to data frame |
bake | Bake, stew, and freeze |
basic_probes | Useful probes for partially-observed Markov processes |
blowflies | Nicholson's blowflies. |
blowflies1 | Nicholson's blowflies. |
blowflies2 | Nicholson's blowflies. |
bsflu | Influenza outbreak in a boarding school |
bsmc2 | The Liu and West Bayesian particle filter |
bsmc2-data.frame | The Liu and West Bayesian particle filter |
bsmc2-method | The Liu and West Bayesian particle filter |
bsmc2-pomp | The Liu and West Bayesian particle filter |
bspline.basis | B-spline bases |
bsplines | B-spline bases |
coef | Extract, set, or alter coefficients |
coef-listie | Extract, set, or alter coefficients |
coef-method | Extract, set, or alter coefficients |
coef-objfun | Extract, set, or alter coefficients |
coef-pomp | Extract, set, or alter coefficients |
coef<- | Extract, set, or alter coefficients |
coef<--method | Extract, set, or alter coefficients |
coef<--pomp | Extract, set, or alter coefficients |
coerce-method | Coerce to data frame |
coerce-method | C snippets |
coerce-method | Probes (AKA summary statistics) |
coerce-method | Power spectrum |
coerce-objfun-data.frame | Coerce to data frame |
coerce-pomp-data.frame | Coerce to data frame |
coerce-probe_match_objfun-probed_pomp | Probes (AKA summary statistics) |
coerce-spect_match_objfun-spectd_pomp | Power spectrum |
cond.logLik | Conditional log likelihood |
cond.logLik-bsmcd_pomp | Conditional log likelihood |
cond.logLik-kalmand_pomp | Conditional log likelihood |
cond.logLik-method | Conditional log likelihood |
cond.logLik-pfilterd_pomp | Conditional log likelihood |
continue | Continue an iterative calculation |
continue-abcd_pomp | Continue an iterative calculation |
continue-method | Continue an iterative calculation |
continue-mif2d_pomp | Continue an iterative calculation |
continue-pmcmcd_pomp | Continue an iterative calculation |
covariate_table | Covariates |
covariate_table-character-method | Covariates |
covariate_table-method | Covariates |
covariate_table-numeric-method | Covariates |
covmat | Estimate a covariance matrix from algorithm traces |
covmat-abcd_pomp | Estimate a covariance matrix from algorithm traces |
covmat-abcList | Estimate a covariance matrix from algorithm traces |
covmat-method | Estimate a covariance matrix from algorithm traces |
covmat-pmcmcd_pomp | Estimate a covariance matrix from algorithm traces |
covmat-pmcmcList | Estimate a covariance matrix from algorithm traces |
covmat-probed_pomp | Estimate a covariance matrix from algorithm traces |
Csnippet | C snippets |
Csnippet-class | C snippets |
dacca | Model of cholera transmission for historic Bengal. |
design | Design matrices for pomp calculations |
deulermultinom | Probability distributions |
discrete_time | The latent state process simulator |
distributions | Probability distributions |
dmeasure | dmeasure |
dmeasure-method | dmeasure |
dmeasure-pomp | dmeasure |
dmeasure_spec | The measurement model density |
dprior | dprior |
dprior-method | dprior |
dprior-pomp | dprior |
dprocess | dprocess |
dprocess-method | dprocess |
dprocess-pomp | dprocess |
dprocess_spec | The latent state process density |
eakf | Ensemble Kalman filters |
eakf-data.frame | Ensemble Kalman filters |
eakf-method | Ensemble Kalman filters |
eakf-pomp | Ensemble Kalman filters |
ebola | Ebola outbreak, West Africa, 2014-2016 |
ebolaModel | Ebola outbreak, West Africa, 2014-2016 |
ebolaWA2014 | Ebola outbreak, West Africa, 2014-2016 |
eff.sample.size | Effective sample size |
eff.sample.size-bsmcd_pomp | Effective sample size |
eff.sample.size-method | Effective sample size |
eff.sample.size-pfilterd_pomp | Effective sample size |
enkf | Ensemble Kalman filters |
enkf-data.frame | Ensemble Kalman filters |
enkf-method | Ensemble Kalman filters |
enkf-pomp | Ensemble Kalman filters |
euler | The latent state process simulator |
ewcitmeas | Historical childhood disease incidence data |
ewmeas | Historical childhood disease incidence data |
expit | Transformations |
filter.mean | Filtering mean |
filter.mean-kalmand_pomp | Filtering mean |
filter.mean-method | Filtering mean |
filter.mean-pfilterd_pomp | Filtering mean |
filter.traj | Filtering trajectories |
filter.traj-method | Filtering trajectories |
filter.traj-pfilterd_pomp | Filtering trajectories |
filter.traj-pfilterList | Filtering trajectories |
filter.traj-pmcmcd_pomp | Filtering trajectories |
filter.traj-pmcmcList | Filtering trajectories |
flow | Flow of a deterministic model |
flow-method | Flow of a deterministic model |
flow-pomp | Flow of a deterministic model |
Forecast | Forecast mean |
forecast | Forecast mean |
forecast-kalmand_pomp | Forecast mean |
forecast-method | Forecast mean |
freeze | Bake, stew, and freeze |
gillespie | The latent state process simulator |
gillespie_hl | The latent state process simulator |
gompertz | Gompertz model with log-normal observations. |
hitch | Hitching C snippets and R functions to pomp_fun objects |
inv_log_barycentric | Transformations |
kalman | Ensemble Kalman filters |
logit | Transformations |
logLik | Log likelihood |
logLik-bsmcd_pomp | Log likelihood |
logLik-kalmand_pomp | Log likelihood |
logLik-method | Log likelihood |
logLik-nlf_objfun | Log likelihood |
logLik-objfun | Log likelihood |
logLik-pfilterd_pomp | Log likelihood |
logLik-pmcmcd_pomp | Log likelihood |
logLik-probed_pomp | Log likelihood |
logLik-spect_match_objfun | Log likelihood |
logmeanexp | The log-mean-exp trick |
log_barycentric | Transformations |
LondonYorke | Historical childhood disease incidence data |
map | The deterministic skeleton of a model |
measles | Historical childhood disease incidence data |
melt-method | Coerce to data frame |
mif2 | Iterated filtering: maximum likelihood by iterated, perturbed Bayes maps |
mif2-data.frame | Iterated filtering: maximum likelihood by iterated, perturbed Bayes maps |
mif2-method | Iterated filtering: maximum likelihood by iterated, perturbed Bayes maps |
mif2-mif2d_pomp | Iterated filtering: maximum likelihood by iterated, perturbed Bayes maps |
mif2-pfilterd_pomp | Iterated filtering: maximum likelihood by iterated, perturbed Bayes maps |
mif2-pomp | Iterated filtering: maximum likelihood by iterated, perturbed Bayes maps |
mvn.diag.rw | MCMC proposal distributions |
mvn.rw | MCMC proposal distributions |
mvn.rw.adaptive | MCMC proposal distributions |
nlf | Nonlinear forecasting |
nlf_objfun | Nonlinear forecasting |
nlf_objfun-data.frame | Nonlinear forecasting |
nlf_objfun-method | Nonlinear forecasting |
nlf_objfun-nlf_objfun | Nonlinear forecasting |
nlf_objfun-pomp | Nonlinear forecasting |
obs | obs |
obs-method | obs |
obs-pomp | obs |
onestep | The latent state process simulator |
ou2 | Two-dimensional discrete-time Ornstein-Uhlenbeck process |
parameter_trans | Parameter transformations |
parameter_trans-character,character | Parameter transformations |
parameter_trans-Csnippet,Csnippet | Parameter transformations |
parameter_trans-function,function | Parameter transformations |
parameter_trans-method | Parameter transformations |
parameter_trans-missing,missing | Parameter transformations |
parmat | Create a matrix of parameters |
partrans | partrans |
partrans-method | partrans |
partrans-pomp | partrans |
parus | Parus major population dynamics |
periodic.bspline.basis | B-spline bases |
pfilter | Particle filter |
pfilter-data.frame | Particle filter |
pfilter-method | Particle filter |
pfilter-objfun | Particle filter |
pfilter-pfilterd_pomp | Particle filter |
pfilter-pomp | Particle filter |
pfilterd_pomp | Particle filter |
pfilterd_pomp-class | Particle filter |
plot | Plotting |
plot-Abc | Plotting |
plot-bsmcd_pomp | Plotting |
plot-method | Plotting |
plot-Mif2 | Plotting |
plot-pfilterd_pomp | Plotting |
plot-Pmcmc | Plotting |
plot-pomp | Plotting |
plot-probed_pomp | Plotting |
plot-probe_match_objfun | Plotting |
plot-spectd_pomp | Plotting |
plot-spect_match_objfun | Plotting |
pmcmc | The particle Markov chain Metropolis-Hastings algorithm |
pmcmc-data.frame | The particle Markov chain Metropolis-Hastings algorithm |
pmcmc-method | The particle Markov chain Metropolis-Hastings algorithm |
pmcmc-pfilterd_pomp | The particle Markov chain Metropolis-Hastings algorithm |
pmcmc-pmcmcd_pomp | The particle Markov chain Metropolis-Hastings algorithm |
pmcmc-pomp | The particle Markov chain Metropolis-Hastings algorithm |
pomp | Constructor of the basic pomp object |
pomp,package | Inference for partially observed Markov processes |
pred.mean | Prediction mean |
pred.mean-kalmand_pomp | Prediction mean |
pred.mean-method | Prediction mean |
pred.mean-pfilterd_pomp | Prediction mean |
pred.var | Prediction variance |
pred.var-method | Prediction variance |
pred.var-pfilterd_pomp | Prediction variance |
Print methods | |
print-method | Print methods |
prior_spec | prior specification |
probe | Probes (AKA summary statistics) |
probe-data.frame | Probes (AKA summary statistics) |
probe-method | Probes (AKA summary statistics) |
probe-objfun | Probes (AKA summary statistics) |
probe-pomp | Probes (AKA summary statistics) |
probe-probed_pomp | Probes (AKA summary statistics) |
probe-probe_match_obfjun | Probes (AKA summary statistics) |
probe.acf | Useful probes for partially-observed Markov processes |
probe.ccf | Useful probes for partially-observed Markov processes |
probe.marginal | Useful probes for partially-observed Markov processes |
probe.match | Probe matching |
probe.mean | Useful probes for partially-observed Markov processes |
probe.median | Useful probes for partially-observed Markov processes |
probe.nlar | Useful probes for partially-observed Markov processes |
probe.period | Useful probes for partially-observed Markov processes |
probe.quantile | Useful probes for partially-observed Markov processes |
probe.sd | Useful probes for partially-observed Markov processes |
probe.var | Useful probes for partially-observed Markov processes |
probe_objfun | Probe matching |
probe_objfun-data.frame | Probe matching |
probe_objfun-method | Probe matching |
probe_objfun-pomp | Probe matching |
probe_objfun-probed_pomp | Probe matching |
probe_objfun-probe_match_objfun | Probe matching |
profileDesign | Design matrices for pomp calculations |
proposals | MCMC proposal distributions |
reulermultinom | Probability distributions |
rgammawn | Probability distributions |
ricker | Ricker model with Poisson observations. |
rinit | rinit |
rinit-method | rinit |
rinit-pomp | rinit |
rinit_spec | The initial-state distribution |
rmeasure | rmeasure |
rmeasure-method | rmeasure |
rmeasure-pomp | rmeasure |
rmeasure_spec | The measurement-model simulator |
rprior | rprior |
rprior-method | rprior |
rprior-pomp | rprior |
rprocess | rprocess |
rprocess-method | rprocess |
rprocess-pomp | rprocess |
rprocess_spec | The latent state process simulator |
runifDesign | Design matrices for pomp calculations |
rw.sd | rw.sd |
rw2 | Two-dimensional random-walk process |
sannbox | Simulated annealing with box constraints. |
simulate | Simulations of a partially-observed Markov process |
simulate-data.frame | Simulations of a partially-observed Markov process |
simulate-method | Simulations of a partially-observed Markov process |
simulate-missing | Simulations of a partially-observed Markov process |
simulate-objfun | Simulations of a partially-observed Markov process |
simulate-pomp | Simulations of a partially-observed Markov process |
sir | Compartmental epidemiological models |
sir2 | Compartmental epidemiological models |
sir_models | Compartmental epidemiological models |
skeleton | skeleton |
skeleton-method | skeleton |
skeleton-pomp | skeleton |
skeleton_spec | The deterministic skeleton of a model |
sliceDesign | Design matrices for pomp calculations |
sobolDesign | Design matrices for pomp calculations |
spect | Power spectrum |
spect-data.frame | Power spectrum |
spect-method | Power spectrum |
spect-objfun | Power spectrum |
spect-pomp | Power spectrum |
spect-spectd_pomp | Power spectrum |
spect-spect_match_objfun | Power spectrum |
spect.match | Spectrum matching |
spect_objfun | Spectrum matching |
spect_objfun-data.frame | Spectrum matching |
spect_objfun-method | Spectrum matching |
spect_objfun-pomp | Spectrum matching |
spect_objfun-spectd_pomp | Spectrum matching |
spect_objfun-spect_match_objfun | Spectrum matching |
spy | Spy |
spy-method | Spy |
states | Latent states |
states-method | Latent states |
states-pomp | Latent states |
stew | Bake, stew, and freeze |
summary | Summary methods |
summary-method | Summary methods |
summary-objfun | Summary methods |
summary-probed_pomp | Summary methods |
summary-spectd_pomp | Summary methods |
time | Methods to manipulate the obseration times |
time-method | Methods to manipulate the obseration times |
time-pomp | Methods to manipulate the obseration times |
time<- | Methods to manipulate the obseration times |
time<--method | Methods to manipulate the obseration times |
time<--pomp | Methods to manipulate the obseration times |
timezero | The zero time |
timezero-method | The zero time |
timezero-pomp | The zero time |
timezero<- | The zero time |
timezero<--method | The zero time |
timezero<--pomp | The zero time |
traces | Traces |
traces-Abc | Traces |
traces-abcd_pomp | Traces |
traces-abcList | Traces |
traces-method | Traces |
traces-Mif2 | Traces |
traces-mif2d_pomp | Traces |
traces-mif2List | Traces |
traces-Pmcmc | Traces |
traces-pmcmcd_pomp | Traces |
traces-pmcmcList | Traces |
traj.match | Trajectory matching |
trajectory | Trajectory of a deterministic model |
trajectory-method | Trajectory of a deterministic model |
trajectory-pomp | Trajectory of a deterministic model |
trajectory-traj_match_objfun | Trajectory of a deterministic model |
traj_objfun | Trajectory matching |
traj_objfun-data.frame | Trajectory matching |
traj_objfun-method | Trajectory matching |
traj_objfun-pomp | Trajectory matching |
traj_objfun-traj_match_objfun | Trajectory matching |
transformations | Transformations |
userdata | Facilities for making additional information to basic components |
vectorfield | The deterministic skeleton of a model |
verhulst | Verhulst-Pearl model |
window | Window |
window-method | Window |
window-pomp | Window |
workhorses | Workhorse functions for the 'pomp' algorithms. |