horns_curve {anomalyDetection} | R Documentation |
Computes the average eigenvalues produced by a Monte Carlo simulation that
randomly generates a large number of n
xp
matrices of standard
normal deviates.
horns_curve(data, n, p, nsim = 1000L)
data |
A matrix or data frame. |
n |
Integer specifying the number of rows. |
p |
Integer specifying the number of columns. |
nsim |
Integer specifying the number of Monte Carlo simulations to run.
Default is |
A vector of length p
containing the averaged eigenvalues. The
values can then be plotted or compared to the true eigenvalues from a dataset
for a dimensionality reduction assessment.
J. L. Horn, "A rationale and test for the number of factors in factor analysis," Psychometrika, vol. 30, no. 2, pp. 179-185, 1965.
# Perform Horn's Parallel analysis with matrix n x p dimensions x <- matrix(rnorm(200 * 10), ncol = 10) horns_curve(x) horns_curve(n = 200, p = 10) plot(horns_curve(x)) # scree plot