clv.SD, clv.SDbw {clv} | R Documentation |
Function computes SD and S_Dbw validity indices.
clv.SD(scatt, dis, alfa) clv.SDbw(scatt, dens)
scatt |
average scattering for cluster value computed using |
dis |
total separation between clusters value computed using |
dens |
inter-cluster density value computed using |
alfa |
weighting factor (normally equal to Dis(cmax) where cmax is the maximum number of input clusters). |
SD validity index is defined by equation:
SD = scatt*alfa + dis
where scatt means average scattering for clusters defined in clv.Scatt
.
S_Dbw validity index is defined by equation:
S_Dbw = scatt + dens
where dens is defined in clv.DensBw
.
As result of clv.SD
function SD validity index is returned.
As result of clv.SDbw
function S_Dbw validity index is returned.
Lukasz Nieweglowski
M. Haldiki, Y. Batistakis, M. Vazirgiannis On Clustering Validation Techniques, http://citeseer.ist.psu.edu/513619.html
clv.Scatt
, clv.Dis
and clv.DensBw
# load and prepare library(clv) data(iris) iris.data <- iris[,1:4] # cluster data agnes.mod <- agnes(iris.data) # create cluster tree v.pred <- as.integer(cutree(agnes.mod,5)) # "cut" the tree # prepare proper input data for SD and S_Dbw indicies scatt <- clv.Scatt(iris.data, v.pred) dis <- clv.Dis(scatt$cluster.center) dens.bw <- clv.DensBw(iris.data, v.pred, scatt) # compute SD and S_Dbw indicies SD <- clv.SD(scatt$Scatt, dis, alfa=5) # alfa is equal to number of clusters SDbw <- clv.SDbw(scatt$Scatt, dens.bw)