LKPBound {elec.strat} | R Documentation |
Finds a p-value through the LKP Bound: a continuous relaxation bound of the original 0-1 knapsack problem. Offers an option to include a lower-bound in output, thus computing an upper and lower bound on the exact p-value. See Higgins, Rivest, Stark for more details.
LKPBound(Z, t = NULL, asTaint = FALSE, asNumber = FALSE, M = NULL, takeOutZeroMMB = TRUE, LKP.lower.bound = FALSE, bound.col = "e.max", calc.e_p=calc.pairwise.e_p, w_p = weight.function("no.weight"))
Z |
A |
t |
Value of the observed maximum, either as the MRO, as taint, or as the overstatement of the margin in votes. |
asTaint |
Set |
asNumber |
Set |
M |
A priori margin. If NULL, |
takeOutZeroMMB |
Setting |
LKP.lower.bound |
Set |
bound.col, calc.e_p, w_p |
Arguments used to compute
|
Mike Higgins, Hua Yang
M. Higgins, R. L. Rivest, P. B. Stark. Sharper p-Values for Stratified Election Audits
See eqValBound
and withReplaceBound
for finding a p-value through other relaxations.
See BaB
for finding an exact p-value
through solving a 0-1 knapsack problem.
See compute.stark.t
for computing t
through audit data.
data(MN_Senate_2006) LKPBound(MN_Senate_2006.strat, takeOutZeroMMB = FALSE) LKPBound(MN_Senate_2006.strat, t = 2, asNumber = TRUE, takeOutZeroMMB = FALSE, LKP.lower.bound = TRUE) data(CA_House_2008) CA_House_2008.strat[[1]]$strat$audit <- 1 LKPBound(CA_House_2008.strat[[1]], t = 0, LKP.lower.bound = TRUE)