BJfindU2 {ELYP} | R Documentation |
This function uses simple search to find the upper level (default 95%) 1 parameter Wilks confidence limits based on the Buckley-James empirical likelihood test function for two dimensional beta's. The confidece interval is for the 1 parameter, determined by Betafun.
BJfindU2(NPmle, ConfInt, LLRfn, Betafun, dataMat, level=3.84)
NPmle |
a 2-d vector: the NPMLEs: beta1 hat and beta2 hat. |
ConfInt |
a vector of length 2. Approx. length of the 2 conf. intervals for beta1 and beta2. May use the SD from bj(). |
LLRfn |
a function that returns the -2LLR. |
Betafun |
a function that takes the input of 2 parameter values (beta1, beta2) and returns a parameter that we wish to find its confidence Interval Lower Value. |
dataMat |
matrix of covariates |
level |
confidence level. |
Basically we repeatedly testing the value of the 2 parameters, until we find the max of Betafun, provided the -2 log likelihood value is <= 3.84 (or other level, if set differently).
A list with the following components:
Upper |
the upper confidence bound. |
maxParameterNloglik |
Final values of the 2 parameters, and the log likelihood. |
Mai Zhou
Zhou, M. (2005). Computing censored empirical likelihood ratio by EM algorithm. JCGS
# The Stanford Heart Transplant Data: with 152 cases. # Needs bjtest( ) function from emplik package to run. ## BJloglik <- function(para, dataMat) { ## yvec <- dataMat[,1] ## dvec <- dataMat[,2] ## x <- dataMat[,3:4] ## temp <- bjtest(y=log10(yvec), d=dvec, x=x, beta=para) ## return(temp) ## } ## BJ2fun <- function (b1, b2) { ## return(b2) ## } ## We first use bj() from Design library to find NPmle and ## the conservative SD of beta1 and beta2 ## BJfindU2(NPmle=c(3.52696077,-0.01989555), ## ConfInt=c(0.3,0.0066), LLRfn=BJloglik, ## Betafun=BJ2fun, ## dataMat=cbind(stanford5$time, stanford5$status, ## rep(1,152),stanford5$age)) ## # This will take (~ 1 min.) to run.