GALGO

An R package for Genetic Algorithm Searches
(Customized for Variable Selection in Functional Genomics)

Victor Trevino & Francesco Falciani
School of Biosciences
University of Birmingham
United Kingdom

November 2005,
February 2006

W O 4 o 0 T /N 1
1.1 What is GALGO? ..ottt 1
1.2 Why developing GALGO? ..o 1
1.3 Whatis a Genetic Algorithm?cccccociiiiiiiiniiiiiice 4
1.4 Implementation of Genetic Algorithms in GALGO package...................... 6
1.5 Statistical Modelcoooiiiiiniiiiic e 6
1.6 Developing multivariate statistical models using GALGO: an overview
of the Analysis pipeline.........ccccccciviiiiiiiiiiiiniiiie 7
1.7 Comparison between Multivariate and Univariate Variable Selection
IMEROAS ... e 8
2 Quick GALGO Tutorialeeeevuvvvevrerrenenenininecsncsnesnenes 9
2.1 The datasetcccoceveeieirenieiiiccceetee e 9
2.2 Step 1 - Setting-Up the Analysis........cccccviiiiiiiiniiniiniiiiiiiccccce 9
2.3 Step 2 - Evolving Models/Chromosomes ..o, 10
2.4 Step 3 - Analysis and Refinement of Populations Chromosome............... 15
2.4.1 Are we getting SOIULIONS?cvevvveviiiiiiiiiiiiiciciccieic s 15
2.4.2 What is the overall accuracy of the population of selected models? 16
2.4.3 Is the rank of the genes stable?coovoveviiviiieiiiiiiiiiiieiicee 20
2.4.4 Areall genes included in a chromosome contributing to the model accuracy?....22
2.5 Step 4 - Developing Representative Models ..., 23
2.6 Visualizing Models and Chromosomes............ccccocovuiiiinininicinniniiicnenne, 25
2.7 Predicting Class Membership of Unknown Samples...........cccoevvvrururnnnee. 27
2.8 SUIMIMATY ..ooviiiiiiiiiiiiiiicirce e 28
3 Step 1 - Setting-up the ANAlYSiS.......uuvuevevvevrerrensensensursuesnens 29
3.1 Data SOUTCEcocviiiiiiiiiiieieee e 29
3.2 Classification Method...........coeoiriniiiiininiiiiiccecceeee 30
3.2.1 MLHD oottt e e 30
3.2.2 K-Nearest-INeighbOoUTc.ccovvviiviiiiiiiiiiiiiciiiciecceecs i 31
3.2.3 Nearest Centroidcoccviviniiiiiiiiiiiiiiiiiiiiiiii e 32
3.2.4 Classification TTEEScccccovveiiiiuiiiiiiiiiiiiciciciece et 32
3.2.5 Neural NetWOTKSccccveiiiiiiiiiiiiiiiiiiiicicit e 32
3.2.6 Support Vector MACHINESc.ccovvviviiiiiiiiiiiiiiiiiciecciecice i 33
3.2.7 Classifiers COMPATISONc.cvvveuiiviuiiiiiiiiiiieiiieieisieis et 34
3.2.8 User-Specific CLASSIfIETccvoveiviiuiiiiiiiiiiiciciciecciei s 35
3.3 Error EStimation ..o 36
3.4 BigBang Object Configurationcccccceueiiniiiniiininiiniiiicccce, 39
341 BlaSt PrOCESSc.ccovvuiiuiiiiiiiiiiiiiiiiiicicicice et 39
3.4.2 Variables in BigBang ObjJectccoeviiiieieiiniiiiiiiiiicicieiiiceee 40

3.4.3 Chromosome Formatting SCREMEc.cccoveveiviiiiveiiiciiicieiiiceec 41

3.5 $data Configuration..........ccoevueueuiininiricciirrceeee s 41

3.6 Genetic Algorithm Configuration (Galgo Object)........cccccovviiiiiininnncne. 42
3.6.1 CUOITE PTOCESS...eccuvveeiieeiiieeiieeeiee sttt ste e ettt ettt e ettt e st esavaeeabaeaatasetaeenareenaneen 42
3.6.2 FItNESS FUTCEION .vveeeveeeiieeeieeeie ettt etee et etta ettt ettt e sva e savaesabaeantaeetaeenasaenaneen 42
3.6.3 OffSPIiNg .cceecvceiiiiiiiiiiitiicicicetc e 43
310,84 CHOSSOULT c.uvveeeveeeeieeiee et et e e e e sttt e et e st e et e et e et a e tbeesabaasaseessseaaatesatseensseenssen 44
3.0.5 IMULATION ..ottt ettt e ettt e e st aesasaesateesataeetseenaseenaren 44
S I = 4] 7 OSSPSR 44
3.6.7 MIQTALION oottt 44

3.7 Setting-up non-classification problemsccccooviiiiiiniiinnnie, 45

3.8 Setting-Up the Analysis Manuallyccccocoeiiinniiiiiiice 45

3.9 Extending ODbjects ... 47

3.10 SUMIMATY ..oviiiiiiiiiiiiiiciicc e 48

4 Step 2 - Evolving Models /| Chromosomes..............coeveeenes 49

41 OUEPULS ..o 49
4.2 Process INterruption ..o 50
4.3 Adding and Merging SOIUtiONSccoeiviiiiiiiiiniiiiiiiiccccee 50

5 Step 3 - Analysis and Refinement of Chromosome
POpulationseeeeeesensensinsensuisisesessessessensesssssssessesessessessens 91

5.1 Analysis of Gene Frequencies and Ranks..........ccccocoeiiiinninnninnne. 51
5.1.1 Gene FreqUETICYcoceviiuiuiiiiiiiieiiciieiieictetctetet i 51
5.1.2 Gene RANKSccocvviiiiiiiiiiiiiiiiiiiiiiici e 52
5.1.3 Stability of Gene RANKS............cccocviviiiiiiiiiiiiiiiiicieccccecc e 53
5.1.4 RaANK INACX ... 53
5.1.5 Gene Frequency DistribUIONccoeiioieieiiiiiiiieiiiicteee e 54
5.1.6 Number of Genes and Frequency............cocoueiviiieieiinieieiiiiiiieeccieees 55
5.1.7 Top Ranked Genes Used by Models..............cocovviiveieiiiciiiiieiiiiiieieicccee 55
5.1.8 Top Ranked Genes itt MOdels...............cccovvviviiiiiiiiiiiiiiiiiiicicicic e 56

5.2 Analysis of Models ... 57
5.2.1 Owerlapped Genes in MOdels..............cocoevvviiiiiiiiiiiiiiiiicicciccccca 57
5.2.2 Gene Interaction-INetwOrkccovvviriiiiiiiiiiiiiiiiiiieccisciecs e 57

5.3 Analysis of Model Accuracies...........cccoeeivvniiiiiinininiiiciincccn 58
5.3.1 Confusion MATIXc.cccevvveivimiiiiiiiiiiiisiciccce s 58
5.3.2 ChromoSome ACCUTACIESccovvveuiiiiuiiiiiiiiiiieieicieis et 61
5.3.3 GENE ACCUTACIES ...ttt 62

5.4 Model Refinement.........ccccceverieiriniiiininiieieeeeeneeeneee e 63

5.5 Assessing GA and CPU Performance............cccccoeveviniciniiininciniccniicinnne. 64

5.6 Chromosome VisualiZationcocccecieevieieenienininenieineneeeesceeceeseeenes 65
5.6.1 HEALMAPS ..oveviiivieiiciicicieietecee ettt 66
5.6.2 Principal COMPONent SPACE...........ccovvvieieviiiiiiiiiiiiiieicieicieictse s 66
5.6.3 RaAW VALUES ... 67

5.6.4 Distribution of Raw VAIUESc.ccoeviiiiiiiiiiiiiiieiiicee 68

57

6.1
6.2

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

5.6.5 Gene Profiles per CLASSc.cocvvveiviiiiiiiiiiiiciciicicccec e 68

5.6.6 Sample Profiles per ClLASScccvivieiviniiiiiiiiciiiciecciccisctecs e 69
Predicting Class Membership of Unknown Samples...........cccccccevuiinnnnncns 69
Step 4 - Developing Representative Models....................... 71
Plotting Representative Models............ccocooiiiniiiiiiie, 72
Predicting Unknown Samples...........cccccviiviiiiniiniinniiiniiiciiccieens 75
Additional OPLionsS.....evevvevensensinsiisiscsisissessessessesssennes 76
Regression and Survival Analysis.........cccccoviviiiiiiiiiicicccce, 76
ParalleliZationccoviiecuieeecieeeecieeeecee ettt 77
Using weighted variables ..o, 78
Using GALGO to solve a classical Optimization Problem 78
Parameter Estimation and Considerationscoueeen. 81
INUMDET Of SOIULIONS .ecevveietieeeiieeetee ettt 81
INUMDET Of GENETAtIONS.....ccivviieiieeeiieeeree ettt eereeeerreeeereeeennas 82
GOAL FIENESS ...ttt ettt e e et eare e e eaae e eetae e eaeeeenneas 83
CRIOMOSOIME SIZEevviieteeeeteeeeteeeetee ettt eete et e et e eeaeaeeesreeeeareeenneas 84
Population SiZe.........ccoiiiiiiiiiiiiiiiiii s 85
|0 R 15 o o WS RRR PR RR 85
Number of Niches and Migration ..., 85
Mutations and CIOSSOVETcccuveeeiveeieireeeeeeeeeeeeeeteeeecteeeeireeeereeeereeeesreeeanes 86

Victor Trevino and Francesco Falciani GALGO

1 Overview

1.1 Whatis GALGO?

GALGO is a generic software package that uses Genetic Algorithms to solve
Optimization problems involving the selection of variable subsets. In the
current version, GALGO has a set of tools to support the development of
statistical models from very large datasets, such as Genome wide functional
data.

GALGO is implemented in the statistical programming environment R [1]
using object-oriented programming under the S3 methods. We used S3
methods instead of S4 to benefit from R.oo package [2] whose main
functionality is to pass objects parameters by reference instead of by value.
The result is that the performance is drastically improved and the memory
requirements are diminished. The R.oo package is therefore required for the
functioning of GALGO.

GALGO can be used to solve any optimization problem, particularly in very
large datasets where variable selection is an important issue. In this release
GALGO include a series of methods to perform supervised classification. In
order to use GALGO as a generic package an ad-hoc fitness function must be
coded. Because of the large number of statistical functions available in R this
is, in most cases, a straightforward operation and does not require extensive
coding.

This manual describes the main functionality implemented in GALGO (v
1.08) and provides a step by step tutorial describing a typical application to
biomarker discovery using gene expression profiling data. The manual also
provides examples on how to implement ad-hoc fitness function for the
solution of regression problems.

1.2 Why developing GALGO?

In the analysis of large datasets, such as data obtained using Functional
Genomics Technologies, the selection of gene signatures predictive of sample
features (for example disease type) is a difficult problem. Commonly the
number of samples is very low (hundreds or dozens) and certain aspects of
the samples are known (for example disease type, strain, treatment, etc). One
of the most basic problems is the selection of genes whose profile is, in some
way, associated to the known sample type, which in turn would allow
acquiring more knowledge about the mechanism of action, generating new
hypothesis, directing further research, selecting biomarkers, and choosing

Victor Trevino and Francesco Falciani GALGO

potential drug targets. In statistics, this association of profiles to known
sample types is called “supervised classification” and there are several
classification methods that “test” if genes are related to samples phenotype.
These methods can be subdivided in univariate and multivariate methods.
Univariate methods evaluate each variable (e.g. a gene) at the time for its
ability to discriminate between two or more groups of samples. PAMR
(Tibshirani et al. 2002), TNASAS (Vaquerizas et al. 2005), and GeneSpring
(Silicon Genetics, Redwood City, CA) are perhaps the most software
applications used by the Functional Genomics community that implement
univariate variable selection methods for classification. These tools use
different statistics to identify genes that are differentially expressed between
two or more groups of samples and then uses the most differentially
expressed to construct a statistical model (Figure 1). These methods have
demonstrated to perform well, however, in some cases they can be ineffective
regardless of the classification method used. An obvious conceptual limitation
of univariate approaches is also the lack of consideration that genes works in
the contexts of interconnected pathways and therefore it is their behaviour as
a group that may be predictive of the phenotypic variables. Multivariate
selection methods may seem to be more suitable for the analysis of Biological
data since variables (such as gene expression values) are tested in
combination to identify interactions between genes. However, the extremely
large number of models that can be constructed from different combination of
thousands of genes cannot be extensively evaluated using available
computational resources. An alternative to the extensive analysis of all
possible models is the use of search procedures that “explore” the data
looking for good, although not optimal, sets of variables. Recently, Markov
Chain Monte Carlo methods and Genetic algorithms have been applied
successfully to the analysis of microarray data (Li et al. 2001; Ooi et al. 2003;
Sha et al. 2004).

At present, there is no available software package to support the development
of statistical models using multivariate variable selection strategies. To
address this issue we have developed GALGO, an R package that uses a
genetic algorithm search procedure coupled to statistical modelling methods
for supervised classification (Figure 2). GALGO is relatively easy to use, can
manage parallel searches and has a toolset for the analysis of models.
Although GALGO include a number of statistical modelling methodologies to
solve classification problems, GALGO can be used as a general tool to solve
optimization problems. This requires rewriting the fitness function to specify
the criteria for the selection of good variable subset. Because of the
functionality that is already available in R, this can be achieved relatively
easily. This manual provides a step-by-step tutorial to solve classification

Victor Trevino and Francesco Falciani

GALGO

problems using microarray data. It also provides examples of the use of
GALGO as a general tool to solve optimization problems.
UNIVARIATE VARIABLE SELECTION

Variable
Computed Ranking Model
ClassA ClassB Univariate Statistic (genes sorted Selection
Samples ~ Samples (AvsB) by statistic) Error
= “better”
Gene 1 :; genes
Gene 2 B 1\}_
= mimum
Gene 3 = § Error
— = — &
— @
= &
Gene N = e |
(A) (B) © (D)

Figure 1 Schematic representation of univariate variable selection. A dataset of two classes
of samples (A) is assessed using a univariate test (B) to rank genes by their sole ability to
distinguish between classes (C). Then, a forward selection strategy using a classification
method is used to detect the number of ranked genes that generates the lowest error (D).

MULTIVARIATE VARIABLE SELECTION IN GALGO

Good
Class A ClassB Classifier
Samples Samples Models
Gene 1 - - Model 1 |31116 498 72 | Genes
Genetic Algorithm Search: Model 2 L~
Gene 2 : lecti ¢ &
Gene 3 Evolutionary se ection o Model 3 |o7664 72 287
“good” gene combinations
L] using a Multivariate
Classification Method
(each run generates a single model)
Gene N ®) Model M | 87 24 31188
(A) ©
v .
Frequency of Variable
G : Ranking Model
G Znﬁz lrdl | (genes sorted Selection
00 odels by frequency) Error
“better”
genes ? :|
= <—
2 Minimum
= 19 Error
—_— H e &
H @«
B
genes

D) (E) (F)
Figure 2 Schematic representation of multivariate variable selection. From a dataset of two
classes of samples (A), a genetic algorithm (B) searches and evolves combination of genes
(chromosomes representing a multivariate model) that distinguish between classes using a
classification method. A number of models are generated performing this procedure
several times (C). These models may differ in gene content but with similar high
classification accuracy. Genes appearing multiple times in different models suggest these
genes are important for the classification problem in a multivariate context. Therefore, the
number of times (frequency) a gene appears in a model is computed (D). These frequencies

Victor Trevino and Francesco Falciani GALGO

are used to rank genes (E). Then, a forward selection strategy is used to select a
representative model that generates the lowest error (F).

1.3 What is a Genetic Algorithm?

Genetic Algorithms (GAs) are variable search procedures that are based on
the principle of evolution by natural selection. The procedure works by
evolving sets of variables (chromosomes) that fit certain criteria from an initial
random population via cycles of differential replication, recombination and
mutation of the fittest chromosomes. The concept of using in-silico evolution
for the solution of optimization problems has been introduced by John
Holland in 1975 (Holland 1975). Although their application has been
reasonably widespread (see Goldberg’s book (Goldberg, 1989)), they became
very popular only when sufficiently powerful computers became available.
What follows is a Step by Step description of the procedure in the context of a
classification problem (see Figure 3 for a schematic representation of the
procedure, note that we will use stages here to avoid confusion with those
steps in the general GALGO pipeline):

Stage 1: The procedure initially creates a number of random variable sets
(chromosomes). These variable sets form a population of chromosomes
(niche).

Stage 2: Each chromosome in the population is evaluated for its ability to
predict the group membership of each sample in the dataset (fitness function).
This is achieved by training a statistical model. The GA tests the accuracy of
the prediction and assigns a score to each chromosome that is proportional to
the accuracy resulted in the fitness function.

Stage 3: When a chromosome has a score higher then a predefined value, this
chromosome is selected and the procedure stops; otherwise, the procedure
continues to stage 4.

Stage 4: The population of chromosomes is replicated. Chromosomes with a
higher fitness score will generate a more numerous offspring.

Stage 5: The genetic information contained in the replicated parent
chromosomes is combined through genetic crossover. Two randomly selected
parent chromosomes are used to create two new chromosomes (Figure 4).
This crossover mechanism allows a better exploration of possible solutions
recombining good chromosomes.

Stage 6: Mutations are then introduced in the chromosome randomly. These
mutations produce that new genes are used in chromosomes

Stage 7: The process is repeated from stage 2 until an accurate chromosome is
obtained. The cycle of replication (stage 4), genetic cross-over (stage 5) and
mutations (stage 6) is called generation.

Victor Trevino and Francesco Falciani GALGO

Stage 1
Create Initial Population o
of Chromosomes Artificial
with random genes chromosome
Stage 2 v
Evaluate all chromosomes Population
using the fitness function and
fitness value
attached
Stage 3

if some fitness
>=goal

SELECT

Stage 4

Generate new popultation:
Reproduce chromosomes
proportionally to its
fitness

new
population

Stage 7

Stage 5 v

Random crossover between

chromosomes pairs crossover

Stage 6 v

Random mutatations on new
population

mutation

Figure 3 Schematic representation of the GA Procedure.

crossover point
P parent A genes parent B genes

Gene | Gene | Gene | Gene [Gene Gene || Gene | Gene | Gene [Gene

parent A 7281 542 9567 522 892 \ 7281 542 9567 1827 9432

; crossover \

Gene Gene Gene Gene Gene / Gene Gene Gene Gene Gene
parent B 9823 72 95 1827 9432 9823 72 95 522 892

1 parent B genes parent A genes

Figure 4 Schematic representation of the Crossover.

*DATA
best chromosomes best
=gene frequencies *max =best =best
=statistics sstatistics *max *max =gene values sshapes
BigBang |—< Galgo |—< World |—< Niche |—< Chromosome |—< Gene |
eblast eevaluate eevaluate eevaluate emutate emutate
eaccuracies eevolve e progeny eprogeny sevaluate
emodel generation eplots eplots «offspring edecode
eplots ~mutate
1

1
1 . . 1 sCrossover
! Fitness Function ! eplots

Figure 5 Simplified object-oriented structure of the GALGO package.

Victor Trevino and Francesco Falciani GALGO

1.4 Implementation of Genetic Algorithms in GALGO package

We design GALGO package as an implementation of GA in object-oriented
paradigm under the S3 methods in R using the objects created by R.oo
package. Figure 5 shows an overview of the relationships of the GALGO
objects. All objects can be extended and all methods can be overwritten. In the
GA terminology variables are defined as genes whereas a subset of n variables
that is assessed for its ability to fit a statistical model is called a chromosome.
Populations of chromosomes are organized in niches that are independently
evolving environments. However, niches have the possibility to occasionally
exchange chromosomes with a process called migration. Multiple niches can
then be part of a world. The Galgo object evolves a list of population objects
(niches or worlds) and generates a best chromosome. The BigBang object
collect these best chromosomes.

1.5 Statistical Model

A statistical model associates parameters computed from variables to make
predictions or to study their relationships. In all models, it is necessary to
make assumptions, which often facilitates the numerical solution but limit the
applicability. For example, an assumption implicit in a t-test is that the values
are normally distributed. To meet the assumptions, transformation of the data
is sometimes necessary before the analysis. Models are generally based on
mathematical relations and depend on both, parameters and data. The data is
used to estimate the parameters of the model in a way that maximize the
accuracy (or minimize the error). For instance, in a linear model y=mx+b, we
usually know x and y whereas m and b are the unknown parameters of the
model that are computed in such a way to minimize the error in the
prediction of y given x. In this way, using the parameters m and b learned
from known data, any new never seen x value can be evaluated into the
model to predict its corresponding y value. Of course this prediction is subject
to error, which would depend on the amount of data, data quality, values of
the parameters, and on the model itself. In particular, the aim in classification
models is the prediction of the class of unknown samples referred as test cases
using the information of the known samples referred as training cases to
estimate the parameters of the classification model. Different classification
methods require particular parameters; however, here we are interested not in
the parameters but in the prediction error made by models. That is, we are
looking for models that produce small errors.

Victor Trevino and Francesco Falciani GALGO

1.6 Developing multivariate statistical models using GALGO: an
overview of the Analysis pipeline

Figure 6 summarize the analysis pipelines that can be built using GALGO.
The first step is the specification of the data, the definition of the parameters
for the GA search, the statistical model (classification method), and the error
estimation. The step 2 consists on searching for gene combinations that are
good classifiers. While the GA is exploring the space of variables for good
solutions it is possible to visualize in real time the characteristics of the
chromosome population in the course of one evolutionary event as well as the
characteristics of the population of selected chromosomes. These plots are
very useful diagnostics tools to understand the behaviour of the search. Once
a large enough population of selected chromosomes is available, in step 3 we
have several options for their analysis. The classification accuracy of the
selected chromosomes can be established on the test data (this can be done on
the original test data or as an average of several training-test data splits) and
the results of this analysis can be summarised in a set of tables or plotted. In
step 4, a single representative model of the chromosome population can be
generated using a forward selection procedure that construct a model
including the most frequent genes in the population of selected chromosomes
in a new model (Li et al. 2001). The classification accuracy of this model can
then be evaluated using the functions described before for the performance
analysis of the population of selected chromosomes. Alternatively the
population of selected chromosomes can be improved either by filtering
chromosomes with a bad classification performance in the test data or by
removing genes that do not contribute to the classification accuracy. Both
individual and summary models can be visualized using heatmaps, PCA,
sample profiles, or gene profiles.

Error Estimation Classification Method GA Parameters

STEP 1:
Setting-Up
The Analysis

Solutions (#)
Migration

STEP 2:
Search for
Multivariate
Models

STEP 3:
Analysis of
Chromosomes

STEP 4:
Development of
a Representative P

§ : —— ;
i i “g- ol | o]
Model i it “ g S E S it Mt T
b I S B il e i e
i 1% ¥ i s

Figure 6 Overview of the analysis pipeline in GALGO package.

Victor Trevino and Francesco Falciani GALGO

1.7 Comparison between Multivariate and Univariate Variable
Selection Methods

We have previously reported the results of a comparison between two
common univariate variable selection strategies (F-statistic and d-statistic)
with the multivariate variable selection method implemented within GALGO
in association with a number of classification methods (bioinformatics paper -
submitted-). Models developed have been analysed in respect to classification
accuracy, number of genes required to achieve the highest classification
accuracy, and the identity of the genes selected in the models. In order to
make sure that our comparison is of general validity we have used three
different datasets. Table shown below is an extracted summary table for the
dataset we will use in this tutorial.

ALL-Subclasses (5 Classes)
Model Selection Optimal Model

Gene Selection +Classifier Size Error
F-statistic (univariate) DLDA 200 0.02
F-statistic (univariate) SVM 75 0.00
F-statistic (univariate) RF 1000 0.17
F-statistic (univariate) KNN 120 0.01
d-statistic (univariate) PAM 439 0.13
GALGO+MLHD (multivariate) ~BE+FS+MLHD 23 0.01
GALGO+SVM (multivariate) FS+SVM 10 0.02
GALGO+RF (multivariate) FS+RF 14 0.01
GALGO+KNN (multivariate) FS+KNN 47 0.01
GALGO+NC (multivariate) FS+NC 50 0.01

FS - Forward Selection, BE — Backward Elimination. DLDA - Diagonal Linear Discriminant
Analysis, PAM — Shrunken Centroids, KNN - K-Nearest-Neighbours, SVM - Support Vector
Machines, NC — Nearest Centroid, MLHD — Maximum Likelihood Discriminant Functions,
RF — Random Forest.

Our results shows that GALGO tends to produce models with comparable or
better classification accuracies respect to univariate variable selection
strategies. The multivariate selected models generally use a smaller number
of genes than univariate models. The gene identity from univariate and
multivariate models appears different. Moreover, the gene identity More
details are given in supplementary material in Trevino and Falciani (2006, -
submitted-). This results support the use of a multivariate model selection
strategy in the analysis of functional genomics data and in particularly
support GALGO as a general tool.

Victor Trevino and Francesco Falciani GALGO

2 Quick GALGO Tutorial

This section describes a typical application of GALGO in biomarker discovery
using large scale expression profiling data. The aim of this analysis is to
identify gene sets that are predictive of disease type in a panel of leukaemia
patients. This tutorial will describe the main basic functionality implemented
in GALGO to introduce the reader in the entire process leaving advances
features in each step for further sections. The analysis pipeline implemented
below is summarised in a schematic form in Figure 6.

2.1 The dataset

This tutorial uses a dataset generated by Yeoh et al. (2002). Briefly, samples
from 327 acute lymphoblastic leukaemia (ALL) patients representing 7
different disease sub-classes have been processed to acquire expression
profiling data using Affymetrix GeneChips. This tutorial summarise the
results of the analysis for a five class problem. Data representing gene
expression profile of five groups of patients (EMLLA, Hyp+50, MLL, T, and
TEL including 27, 64, 20, 43, and 79 samples respectively) have been selected.
The original dataset comprising 12,600 genes have been filtered to eliminate
the most invariant genes. The standard deviation and difference between
maximum and minimum expression value were calculated for each gene. The
genes were ranked by these values, and if they were within the top 15% for
either, were selected for further analysis. The dataset after filtering contained
the expression values for 2,435 genes.

2.2 Step 1 - Setting-Up the Analysis

In the GALGO package we have included a data-frame object (ALL) that
contains the normalized expression values. The object is a matrix in which
rows are genes and columns are samples. The identity of the samples is
defined in another object that (ALL.classes). Both objects are loaded using the
function data (name object).

In R type:

> library (galgo)
> data (ALL)
> data(ALL.classes)

Of course, user data from an external text file can be loaded (see section 2.1).
The wrapper function “configBB.VarSel” is used to specify the data, the
parameters for the GA search, the classification method, the error estimation
method, and any user-defined parameter. This function builds a BigBang

Victor Trevino and Francesco Falciani GALGO

object that contains the data and the values of all parameters and will
eventually stores the results of the analysis.

To set up the GA search type in R:

> bb.nc <- configBB.VarSel (
data=ALL,
classes=ALL.classes,
classification.method="nearcent",
chromosomeSize=5,
maxSolutions=300,
goalFitness = 0.90,
main="ALL-Tutorial",
saveVariable="bb.nc",
saveFrequency=30,
saveFile="bb.nc.Rdata")

The code above configure a BigBang Object that will store 300 chromosomes
(maxSolutions=300) which will contain 5 genes (chromosomeSize=5) that
correspond to models developed using a nearest centroid classifier
(classification.method="nearcent”) with a classification accuracy of at least 90%
(goalFitness=0.9). The other parameters define the name of the saved object
that is created (saveVariable="bb.nc”), the frequency of saving the results in a
tile (saveFrequency=30) and the name of the file where the results are saved
(saveFile="bb.nc.Rdata”).

The wrapper function configBB.VarSel can also be used to configure additional
functions. These will briefly explained in following sections. Please refer to
package manual for an extensive description of the configBB.VarSel parameter
specification. To show the parameter specification type:

> ?configBB.VarSel

2.3 Step 2 - Evolving Models/Chromosomes

Once the BigBang and Galgo objects are configured properly, we are ready to
start the procedure and to collecting chromosomes associated to good
predictive models of tumour class. This is achieved by calling the method
“blast”.

In R type:

> blast (bb.nc)

10

Victor Trevino and Francesco Falciani GALGO

This procedure can last a long time (from minutes to hours) depending on the
degree of difficulty of the classification problem, on the classification method,
and on the GA search parameters. The default configuration displays the
course of BigBang and Galgo objects to the console (controlled by the verbose
parameter) including the approximated remaining time.

This is an example of the text output for one GA cycle (61 generations):

[e] Starting: Fitness Goal=0.9, Generations=(10 : 200)

[e] Elapsed Time Generation Fitness %Fit [Next Generations]
[e] Oh Om Os (m) 0 0.64103 71.23% +++++++.. .+ L
[e] Oh Om 6s 20 0.87179 96.87%t
[e] Oh Om 14s 40 0.87179 96.87%+..+.....+.+...
[e] Oh Om 22s 60 0.92308 102.56% +

[e] Oh Om 22s % ¥k 61 0.92308 102.56% FINISH: 2164 1612...
[Bb] 300 299 Sol Ok 0.92308 102.56% 61 22.16s 3722s

4054s 14 (Oh Om 14s)

Lines starting with “[Bb]” correspond to the current collection of the BigBang
object. This line shows respectively the number of evolutions (300 in this
case), the number of evolutions that have reached the goal fitness (299), the
status of the last evolution (Sol Ok — the goal fitness was reached), the fitness
value of the best chromosome from the last evolution (0.92408) along with it
percentage relative to the goal fitness (102.56%), the number of generations it
needed (61), the process time spent in last evolution (22.16 seconds), the
accumulated process time spent in all evolutions (3,722 seconds), the
accumulated real time (4,054 seconds, which considers the time spent by
saving the object and other operative system delays), and the remaining time
needed to collect the previously specified number of chromosomes (14
seconds).

Lines starting with “[e]” represent the output of the evolutionary process (the
genetic algorithm search). The first line of each evolution shows the goal
titness and the constraints in generations. Successive lines show, in columns,
the elapsed time, the current number of generation (by default refreshed
every 20 generations) and the current best fitness along with the percentage
relative to the goal fitness. The last column summarize the behaviour of next
generations, “+” means that maximum fitness of the current population has

" i

increased, means that it has decreased, and “.” means that it has not
changed. “G” appears occasionally when the fitness goal has been reach but

the algorithm can not end because a constraint in the number of generations.

The default configuration would show three plots summarizing the
characteristics of the population of selected chromosomes Figure 7. The
topmost plot shows the number of times each gene has been present in a
stored chromosome, by default the top 50 genes are coloured and the top 7 are

11

Victor Trevino and Francesco Falciani GALGO

named. The middle plot shows the stability of the rank of the top 50 genes,
which is designed to aid in the decision to stop or continue the process once
the top ranked genes are stabilized. When genes have many changes in ranks,
the plot show different colours; hence the rank of these genes is unstable.
Commonly the top 7 “black” genes are stabilized quickly, in 100 to 300
solutions, whereas low ranked “grey” genes would require many thousands
of solutions to be stabilized. The plot at the bottom is the distribution of the
last generation of the GA process that have produced a solution. It is intended
to show how difficult is the search problem for the current configuration of
GA. If peaks are observed at either end, a configuration change is advisable
(see further sections).

Once the blast method ends, you can continue with the analysis step.
However, the blast process can be interrupted (by typing the ctrl-c keys in
Linux or esc in windows) and the results analyzed straight away. It is
recommended to break the process in the evolution stage, not in the BigBang
update stage that may disrupt the object. The process can be resumed by
typing the blast command again. The result of the last evolution might be lost
but the accumulated results should remain be intact. Resuming the process
will have the effect of restarting the Galgo object as in any cycle. The
possibility to interrupt the process is very useful for initial exploratory
analysis since the most updated results can be analysed and can be saved
anyway using the saveObject method. Instead of interrupting the process, you
can open a new R console and benefit from the use of progressive saving
strategy that updates the current object called “bb.nc” into a file named
“bb.nc.Rdata” once at least 30 solutions have been reached (controlled by
saveVariable, saveFile, and saveFrequency parameters respectively). To do
this, a previously saved object can be loaded in GALGO using the loadObject
method in a new R console window:

> library(galgo)
#change directory to yours
> loadObject("bb.nc.Rdata")

Once the file is loaded, the loadObject method displays a summary of the
loaded variables and their classes and you can proceed to the analysis step.

12

Victor Trevino and Francesco Falciani

Gene Freq y (All 303 Chr)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

GALGO

40
1

34583 at 33162_at
41430_a

Frequency
20

10
1

307 _at™

\]
1000 1500

oiMlu‘ilm”luM J‘meh

Gene Rank Stability (All 303 Chromosomes)
an-0,1-kfol.

Ml lMU

Rank + Frequency

Last Generation (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

120
|

80
1

Frequency
60
1

20
1

L ——

0 50 100 150
Figure 7 Default monitoring of accumulated chromosomes in the BigBang object.

3% 7% 10% 13%

0%

0% 17%

GALGO also have the functionality to summarise the population of
chromosomes within each generation. The code below shows the
modifications to the definition of the BigBang Object that are required to

activate this function (marked in red).

> x11 ()

> x11 ()

> bb.nc <- configBB.VarSel (
data=ALL,

classes=ALL.classes,
classification.method="nearcent",
chromosomeSize=5,
maxSolutions=300,

goalFitness = 0.90,
saveVariable="bb.nc",

13

Victor Trevino and Francesco Falciani GALGO

saveFrequency=30,

saveFile="bb.nc.Rdata",

main="ALL-Tutorial",

callBackFuncGALGO=plot,
callBackFuncBB=function(...) {dev.set(2) ;plot(...) ;dev.set
(3); 1}

)

The topmost plot in Figure 8 shows the current values of the genes in
chromosomes in order to show the explorative process. The middle plot
shows the evolution of the fitness relative to the goal in the course of
generations. The plot at the bottom shows the history of the maximum
chromosome.

[World 1]

Population
R R .] B B
® 8 o 2 g ¢

° g ° g
° 2 3 g 9
. ° o @ e g ° 8 @
o ° 3 °
° ° ° k3

5 10 15 20

Chromosome

g g 330
2 g S
g g 8

g ° g

2 g

° g
2 8

g @ 8
3 L

0

1

X oo

Iowooo oo o
°

P

0 500 1000 1500 2000 2500

Gene

Fitness History

Fitness
075 080 085 080

Generation

iche
Max-Chromosomes

Generation
1
-

o] i
“7 * ; 1 ‘
H H

T T T T
500 1000 1500 2000

Figure 8 Real-time monitoring of the Genetic Algorithm search. The horizontal axis of the
top and bottom plots display unranked gene indexes. The vertical axis of the top panel is
displaying the chromosome index whereas the vertical axis of the bottom panel is
displaying the generation number. In the middle plot the horizontal axis is displaying the
generation whereas the vertical axis is displaying the fitness value.

14

Victor Trevino and Francesco Falciani GALGO

2.4 Step 3 - Analysis and Refinement of Populations
Chromosome

2.4.1 Are we getting solutions?

The first question we have to answer is whether we are actually getting
acceptable solutions. By default, configBB.VarSel configures the BigBang
object to save all chromosomes even if they didn’t reach the goalFitness value.
The reason is that we need to assess the success of the configured GA search
under all searches, not only in those that reach solutions. We can analyze the
success of the configured GA search by looking at the evolution of the fitness
value across generations, using the code below.

> plot(bb.nc, type="fitness")

Figure 9 shows that in average, we are reaching a solution in generation 40,
which is very sensible. The lines show the average fitness for all chromosomes
and for those that have not reached a goal respectively. These lines intend to
delimit an empirical “confidence interval” for the fitness across generations.
The characteristic plateau effect could be useful to decide if the search is not
working to reach our goal, which is marked with dotted line (see section 8.3 if
you cannot reach solutions).

Fitness (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

Fitness

06

] — Mean (all)
40 Mean (unfinish)
T T T T T

0 50 100 150 200

Generation

Figure 9 Evolution of the maximum fitness across generations in 303 independent searches.

It is possible to separate the evolutions that have reached the goal using the
following code.

> par (mfrow=c(2,1))
> plot(bb.nc, type="fitness", filter="solutions")
> plot(bb.nc, type="fitness", filter="nosolutions")

15

Victor Trevino and Francesco Falciani GALGO

The “filter” parameter can be used almost in any function and in any plot
type.

2.4.2 What is the overall accuracy of the population of selected
models?

Once the chromosomes have been selected we need to asses the classification
accuracy of the corresponding models using one of the three Strategies that
we describe in BOX 1. The default configuration will estimate the accuracy of
the models using Strategy 3 as described in BOX 1.

Use the following command to plot the overall accuracy.

> plot(bb.nc, type="confusion")

The output of this function is shown in Figure 11. The horizontal axis
represents the individual samples grouped according to the disease class
whereas the vertical axis represents the predicted classes. The barcharts
represent the percentage of models that classify each sample in a given class.
For example, samples in second column (marked in red) belong to the
HYP+50 class. These are, on average, correctly classified 85.6% of the times.
However, on average, they are “wrongly” classified 2.5% of the times as
EMLLA, 5.4% of the times as MLL, 1.5% as T, and 5% as TEL. The plot also
report the value of sensitivity and specificity of the prediction. These are
measures of the overall prediction per class. The sensitivity of the prediction
for a given class k is defined as the proportion of samples in k that are
correctly classified. The specificity for a given class k is defined as the number
of true negatives divided by the sum of true negatives and false positives.

To obtain the confusion matrix, specificity, and sensitivity measures in a
numeric format use the following code.

cpm <- classPredictionMatrix (bb.nc)
cm <- confusionMatrix(bb.nc, cpm)

sec <- sensitivityClass(bb.nc, cm)
spc <- specificityClass(bb.nc, cm)

vVVVyV

16

Victor Trevino and Francesco Falciani GALGO

BOX 1: Error estimation Strategies in GALGO

There are several methods to estimate Classification accuracy. These are all based on the
fundamental principle that a correct estimate of accuracy must be performed on a set of
samples that has not been used to develop the model itself.

Classical approaches involve splitting data in training and test sets. The training set is used to
estimate the parameters of the model whereas the test set is left aside and it is used to asses
the accuracy of the model itself. This approach is considered the most appropriate when a
large number of samples is available. However, when the number of samples is relatively
small, as it is the case of a typical microarray experiment, the test set could be too small to
estimate the classification accuracy with acceptable precision.

In order to estimate the accuracy with small datasets it is possible to use a different statistical
technique called cross-validation. The dataset is split in k different training and test sets. The
classification accuracy is then defined as the average of the classification accuracies
calculated, by default, on the test sets for each of the k splits. GALGO uses a technique called
bootstrapping (Efron et al. 1993) to generate the splits.

Within GALGO we can use three main strategies for estimating Classification accuracy. In the
first strategy a simple cross-validation or resubstitution error strategy is used to compute the
value of the fitness function that guide chromosome selection in the GA procedure. The
classification accuracy of the selected chromosome is defined as the fitness value (Figure
10A). The second strategy (Figure 10B) is a classic Training and Test procedure where the
accuracy is estimated on the test data. In the GA process, the value of the fitness function is
estimated by cross validation on the training data. Other approaches, such as .632 bootstrap
(Efron et al. 1993), combine training and test accuracies, which can be specified as error
weights through the parameter classification.test.error = ¢(.368, .632) for training and test
respectively. The third strategy is to select the Chromosomes as in the second strategy and to
compute the classification accuracy of the selected chromosomes as the average of the
classification accuracy estimated on k data splits as exemplified in Figure 10C.

GALGO defines the initial split (common to both strategies) as Split 1.

A B C
(no splits) Split 1 Split 2 — Split k:
DATA DATA DATA
2/3 1/3 2/3 1/3
Training And Test Training Test Training Test
K-fold-cross-validation K-fold-cross-validation K-fold-cross-validation
resubstittion resubstitution resubstitution
loocv loocy loocy
Chromosomes Chromosomes Chromosomes
train=1 train=2/3 train=rep(2/3,k)
test=0 test=1/3 test=rep(1/3,k)

Figure 10 Schematic Representation of the Estimation of Classification Accuracy. (A)
Strategy 1, using all data as training and test. (B) Strategy 2, classical training and test. (C)
Strategy 3, k repetitions of the strategy 2. The respective values of the parameters, train and
test, needed to perform each strategy is shown at the bottom of the schema.

17

Victor Trevino and Francesco Falciani GALGO

cpm is a matrix with the number of times every sample as been predicted as
any other class. For instance, let analyze the first rows of cpm.

> cpm[1:3,]

EMLLA HYP+50 MLL T TEL (NA)
E2A.PBX1.C1l 10837 1418 1062 1473 663 0
E2A.PBX1.C2 13654 101 767 113 212 0
E2A.PBX1.C3 13729 262 1225 218 19 0

The output above shows that E2A.PBX1.C2 sample has been predicted 14847
times (the row sum), in which 13654 times (92%) as been predicted as
EMLLA, 101 times (0.6%) as HYP+50 and so on. The number of predictions
depends on how we estimate the error in terms of training and test sets, and
the number of chromosomes (type ?classPredictionMatrix.BigBang). By
default, the prediction is made on test sets only for each chromosome (303 in
the plot shown here). Initially, configBB.VarSel function generated 150
random test sets and each test set was made using 1/3 of the samples. Thus, in
average, a sample would be predicted 303 * 150/3 times, that is 15150 times,
which is comparable to 14847 for the second sample. In certain circumstances,
some classification methods cannot make a prediction based on the data,
“(NA)” column summarise those cases (for nearest centroid method, it will be
0 always).

18

Victor Trevino and Francesco Falciani GALGO

Class Confusion (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

(NA)
0 0 0 0 0
0919
TEL
0013 005 0.028 0.016
0.883
T | I
001 _ o5 | 0039 0005 . .
0.
MLL I
@ 1054 0.049
S o o lner Il il g b, 0016
= 0855
2
4YP+50 5
o s 002 bt
- A o {IPSORCTIL [P TR OO IO ATIT YT YO0 T TTOR NANORTT AR
EMLLA 0.086
s 9925 | e OO 0012
EMLLA HYP+50 MLL T TEL
27 64 20 43 79
Samples Samples Samples Samples Samples
Sensit _| 0917 0.856 0.764 0.883 0919
Specif 0.964 0.955 0.96 0.983 0973
Original Class (sorted _

(o e

Figure 11 Overall classification accuracy.

To evaluate the error in the first training set (as they were evolved), we can
use the following changes in parameters.

> plot(bb.nc, type="confusion", set=c(1,0), splits=1,
filter="solutions")

set parameter specify that the error estimation should be computed in the
training set only. splits parameter limit the estimation to one partition, the
original used to evolve the chromosomes. filter specify that only chromosomes
that reach the goal fitness will be evaluated. In this plot (not shown) some
samples do not show it respective “bar”, which indicate that those samples
were never predicted. This is because we limit the evaluation to the train set
in the split #1, which should contain 155 samples approximately (66%).

To evaluate a single chromosome or any other model in the same
circumstances use the following code.

19

Victor Trevino and Francesco Falciani GALGO

> plot(bb.nc, type="confusion", set=c(0,1), splits=1,
chromosomes=1list (bb.nc$bestChromosomes[[1]]))

In this case, the bars do not represent an average prediction because each test
sample were predicted once (1 model in 1 split only).

2.4.3 Is the rank of the genes stable?

Stochastic searches (such as GA) are very efficient methods to identify
solutions to an optimization problem (e.g. classification). However they are
exploring only a small portion of the total model space. The starting point of
any GA search is a random population. Different searches therefore are likely
to provide different solutions. In order to extensively cover the space of
models that can be explored it is necessary to collect a large number of
chromosomes. GALGO offers a diagnostic tool to determine when the GA
searches reach some degree of convergence. Our approach is based on the
analysis of the frequency that each gene appears in the chromosome
population. As chromosomes are selected the frequency of each gene in the
population will change until no new solutions are found. Therefore
monitoring the stability of gene ranks (based on their frequency) offers the
possibility to visualize model convergence.

To produce the rank stability plot type:

> plot(bb.nc, type="generankstability")

By default, the most frequent 50 genes are shown in 8 different colours with
about 6 or 7 genes per colour (Figure 5). Horizontal axis in Figure 5 shows the
genes ordered by rank. Vertical axis shows the gene frequency (in the top part
of the y axis) and the colour coded rank of each gene in previous evolutions.
Consequently, for a given gene, changes in ranks are marked by different
colours (below the frequency). Figure 5 shows that the first 7 black genes have
been stable at least during the last 50 solutions whereas some red genes have
recently swap from green. Thus, red and green genes are not yet stable; this is
because 303 chromosomes are not enough to stabilize these genes. Probably,
1000 chromosomes would generate more stable results, however, the more
chromosomes the better. For comparison, Figure 6 shows the result for the
same run used here but using 1000 chromosomes, which exhibit more
stability in ranks. Another property is that top genes are being stabilized in
order; first black genes, then red, green and so on. For longer runs
comparisons, see further sections.

20

GALGO

Victor Trevino and Francesco Falciani

Gene Rank Stability (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

0s 0 08- 00}~ 0S1- 00c- 0s¢- 00¢-

Aousnbai4 + uey

Genes

Figure 12 Gene Ranks across past evolutions.

Gene Rank Stability (All 1000 Chromosomes)

%0y

%02 %0

1e”80pec™
L o
e 21088™
je"0898™
1768
leTeel
e

1”1 zgee™

RLN
je"Bso8e™™
eTepesem

17 0gese™

e /871]

1" gegge™™
1876 g0 == = i
187 18/66™

le” L0
1e”6ResE™

1 L0zze™—

e goeE™

e zpzee™
JeTpggm—
jleTegsrEm
1678 L0606
jeTg g

1B Gop |
187 GZe |
L Iolele S
18T 0gzLEm—
LI
187260 | ff—
LR

0oy

T T T T T T T
002 0 00z- 0oy~ 009~ 008- 000}~

Aousnbal + Yuey

Genes

Figure 13 Rank Stability in 1000 chromosomes.

21

Victor Trevino and Francesco Falciani GALGO

2.4.4 Are all genes included in a chromosome contributing to the
model accuracy?

The chromosome size is fixed by an initial parameter in GALGO. This implies
that some of the genes selected in the chromosome could not be contributing
to the classification accuracy of the correspondent model. GALGO offers the
possibility to identify these genes and remove them from the chromosomes.
This can be done after the selection is completed or within the selection
process itself. In order to perform this task we have implemented a backward
selection procedure. The methodology works as follows. A given gene is
removed from the chromosome. The classification accuracy of the resulting
shorter chromosome is then computed. If this is not reduced, another
elimination cycle is performed. If the Classification accuracy is reduced the
gene is left in the chromosome and another elimination cycle is performed
until all genes have been tested.

In order to perform this procedure type:

> rchr <- lapply (bb.nc$bestChromosomes[1:300],
robustGeneBackwardElimination, bb.nc, result="shortest")

The distribution of the size of the refined chromosome population can be
plotted using the following function.

> barplot(table (unlist(lapply (rchr,length))),
main="Length of Shortened Chromosomes")

Length of Shortened Chromosomes

3 4

Figure 14 Refinement of the chromosomes.
Figure 14 shows that a large proportion of the chromosomes require all five
genes to accurately classify the samples. Considering that the problem we are

trying to solve here is a five-class problem (multi-class), the fact that in this
example the majority of the models actually need five genes is not particularly

22

Victor Trevino and Francesco Falciani GALGO

surprising. However, it is common to build models with more genes than
classes; indeed the majority of the datasets actually contain only two classes
(e.g. treated-untreated, cancer-normal, wild-mutant, etc). Therefore we
encourage the users to perform this analysis regularly.

2.5 Step 4 - Developing Representative Models

The GA procedure provides us with a large collection of chromosomes.
Although these are all good solutions of the problem, it is not clear which one
should be chosen for developing a classifier, for example, of clinical
importance or for biological interpretation. For this reason there is a need to
develop a single model that is, to some extent, representative of the
population. The simpler strategy to follow is to use the frequency of genes in
the population of chromosomes as criteria for inclusion in a forward selection
strategy. The model of choice will be the one with the highest classification
accuracy and the lower number of genes. However GALGO also stores
alternative models with similar accuracy and larger number of genes. This
strategy ensures that the most represented genes in the population of
chromosomes are included in a single summary model.

This procedure should be applied to the population of chromosomes
generated by initial GA search. However, it can also be applied to the
population of chromosomes that is the result of backward selection procedure
explains in the previous paragraph.

The forward selection model can be generated by typing:

> fsm <- forwardSelectionModels (bb.nc)
> fsm$models
> ?forwardSelectionModels.BigBang # Help System

23

Victor Trevino and Francesco Falciani GALGO

Models Using Forward Selection

[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

O O O O O N N
g

R E R R ARG E IR RBEEE I RRS

1.0

£ -0 -6 -5-6-© g,,q;,@.,q, =

Average Fitness

08

08

07

086

05

(11

[')}O 9883 $ LI D e
[3] .

[4]

[g]
H =
8,
[¢
[10]

pih bbb bbb

¥¢4++++

BBp s 'L(‘

Tty A AR A A e B

-

-+~ overall (233)

-3
VI

EMLLA (27)
HYP+50 (64)
MLL (20)

T (43)

TEL (79)
average (7)

12283
12334
at: 422

11911

12123

5614_at 912

P

578 at ' 556 —
68 at: 1139
6493 2t 965
6536 _at ' 969
814_at: 1935
73‘f:at 451
8518 at: 544

0 at: 1327

7 s_at: 1601
8604 at: 562

62
88_a
90
55_a

4_at: 1148

07 _at: 2387

583_at: 208
43 _at: 1652

o~
i\moov

6_s_at: 2396 —|
753 at: 2287

3
4
1
4
4
7
5
6
8
9
3
4

Figure 15 Forward selection using the most frequent genes. Horlzontal axis represents the
genes ordered by their rank. Vertical axis shows the classification accuracy. Solid line
represents the overall accuracy (misclassified samples divided by the total number of
samples). Coloured dashed lines represent the accuracy per class. 1 model resulted from
the selection whose fitness value is maximum (black thick line), but 29 models were

finally reported because they were very similar in absolute value.

Figure 15 shows the results from forward selection procedure. The selection is
done evaluating the test error using the fitness function in all test sets. The
output is a list of values including the models whose fitness is higher than
99% of the maximum (or above a specified value using “minFitness”
parameter). fsm object contains the best models (29 in this case). Model
labelled as 12, containing the most 33 frequent genes, was the best model in
terms of accuracy. The other 28 models included in fsm are 99% as close to the
best model. Any resulted models can be viewed in heat maps, PCA space, or
profiles. To visualize the best model in a heatmap plot use the following code.

> heatmapModels (bb.nc, fsm, subset=12)

Details for visualization of models (or chromosomes) are given in sections 2.6
and 5.6.

24

Victor Trevino and Francesco Falciani GALGO

The classification accuracy can be plotted extracting the information for any of
these specific models, as in the example below (plot not shown).

> plot(bb.nc, type="confusion",
chromosomes=1ist (£sm$models[[1]]))

> cpm.1l <- classPredictionMatrix(bb.nc,
chromosomes=1ist (£sm$models[[1]]))

> cm.1l <- confusionMatrix(bb.nc, cpm.1)
> mean (sensitivityClass(bb.nc, cm.1))
[1] 0.9863334

> mean (specificityClass(bb.nc, cm.1))
[1] 0.9965833

From the mean values of sensitivity and specificity we can conclude that the
selected model is, by far, more accurate than any original evolved
chromosome.

2.6 Visualizing Models and Chromosomes

Gene signatures associated within individual chromosomes or in a
representative model (derived by forward selection) can be visualised in
GALGO using a number of graphical functions. In this section, we will
demonstrate the use of heat maps and PCA. For, the typical heat map format,
use the following commands.

> heatmapModels (bb.nc, fsm, subset=1l) # forward
> heatmapModels (bb.nc, bb.nc$bestChromosomes[1])

The results are shown in Figure 13"

In order to visualise the relation of samples using the genes selected in a
chromosome or in a representative model we can also use principal
component analysis representation. In order to do this, type the following
command (Figure 17).

> pcaModels (bb.nc, fsm, subset=1)
> pcaModels (bb.nc, bb.nc$bestChromosomes[1])

* Remember that the hierarchical clustering of samples given in the heat map is the product of
an unsupervised algorithm, which may differ from the classification method of our choice.
Therefore, the relative sample order in the heat map, the original class, and the predicted
class by the model may all be different. Nevertheless, many of the times, the hierarchical
clustering gives a good overview.

25

Victor Trevino and Francesco Falciani GALGO
By default, only the first four components are shown, which can be changed
specifying the npc parameter.

Other useful way to show a model is using the profiles of samples within a
class as shown in Figure 18, which is the result from the code.

> plot(bb.nc, fsm$models[[1l]], type="sampleprofiles")
3ioinformatics.Ra

A ioinformatics, r : 2 ean-0,1-kfolds B ean-0,1-kfolds

=value + =value +

20 : 1601 : 36937 s at

2: 208: 24583 at

13 : 1367 : 32207_at —
5:1911: 41490 at

15 98538433 at

10 1139 : 28968 at

1:2387 : 307_at —
16: 969:38538at | |

21: 562:38804 at —

22: 1029 : 37280_at

171935 : 41814 at

6:2283: 755_at

14: 708: 41097 at

8: 422:36239 at

1812390 : 2686 s at

3: 1909 : 33162 at _
1211736 : 38408 at

9: 556:38578 at

4:2123: 1488 at

11: 1852 : 37343 at

7:2334: 578 at

1912287 : 753 at

= 8

Figure 16 Heatmaps. From a model resulted from forward selection (A) and an original
evolved chromosome (B).

e = N N
I L | | i
5:2371:37C

1:1943 0325

3:2123 - 148

[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds [ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
9,2123,1911,2283,2334,422,556,1139,1652,1736,1367,708,965,969,1935,2396 Model:(1943,965,2123,969,2371)
4 2 0o 2 32401234 2 4 0 1 2 3 2 4 0 1 2
PC1 PC1 N L
34,6904, 36.84683* 32
(34.7%) (36.8%)
u EMLLA (27) u EMLLA 27)
B HYP+50 (64) B HYP+50 (64)
3 MLL (20)
B T(43)
TEL (79) 8
N PC2|
19.10319 2586531

(62.7%)

= ENLLA (27) = EMLLA (27) "

B HYP+50 (64)

: MLL (20)
T(43)

a TEL (79)

—pca

10.85469
(92.9%)

© | enuar

W EMLLA (27)
« | B HYP50 (64) v B HYP+50 (64)
B WL (20) o B ML (20)
m T(43) - m T(43)
O TEL (79) - O TEL (79)
T T T T E e s e e e
2 0 2 2401 2 2 4 0 1 2 3

Figure 17 Depiction of a model (left) and a chromosome (right) in PCA space.

26

Victor Trevino and Francesco Falciani GALGO

Sample Profiles
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
Gene

MLL -

Value & Class

4YP+50 |

py
i/

w

EMLLA -

2123:1488_at — (;

1911:41490_at —
1139:38966_at
965:36493_at —|
1367:32207 _at |
208:34563_at —| 4
1969:33162_at —|
708:41097_at —
422:36239_at |
2396:266_s_at —|
2283.755_at —|
1935:41814_af
1029:37280_at —
562:38604_at —{ {
2387:307_at |
969:36536_at —|
2334:578_at |
2267:753_at |
1736:38408_at —| \\
1652:37343_at |
556:38578_at —|

1601:36937_s_at

Figure 18 Sample profiles per class.

2.7 Predicting Class Membership of Unknown Samples

An important characteristic of any model is their ability to make predictions.
Models designed using GALGO can be evaluated with a complete unknown
or blind dataset (see also section 5.7). The following code exemplify how
make predictions in a new “dummy” dataset for all chromosomes collected in
the BigBang object.

data (ALL)

dummy data: the first 15 samples from original ALL data
which all must be from EMLLA class

dummy <- ALL[,1:15]

?predict.BigBang

cpm <- predict(bb.nc, newdata=dummy,
func=classPredictionMatrix, splits=1:10)

> cpm

> plot(bb.nc, cpm, type="confusion")

VVYV#*#V

In the above code, dummy was temporally appended to the original data.
Then classPredictionMatrix was run for all chromosomes. splits is a parameter
used in classPredictionMatrix (which was used to illustrate the use of user-
parameters for any function specified in func). The result of the plot is shown
in Figure 19 where the new data was labelled as “UNKNOWN”. The black
bars in these samples indicate that they were predicted as EMLLA (as
expected).

To predict new data using an individual model, we may wuse the

classPredictionMatrix method wusing the chromosomes parameter (see
?classPredictionMatrix.BigBang), such as in the following code.

27

Victor Trevino and Francesco Falciani GALGO

> cpm <- predict(bb.nc, newdata=dummy,
func=classPredictionMatrix, chromosomes=fsm$models[1l])
> cpm

> plot(bb.nc, cpm, type="confusion")

Class Confusion (1000 Models)
[Yeoh-ALLs]:nearcent-mean-0,1-kfolds

Il Q Q Q 0 S —
CNOWN I
0 Q Q 0 o
od7
TEL
0013 0052 0.025 0019 0015
U391
g ooz, MM WD
001 0013 . 031 e —
. 1 §o5e 0.008, 0017,
O
MLL S I
g M. 0042 A 8.031. T 9.039 0012, 2.93
HYP+50 {8
o I L0081 0.028 P TEL 7. TR 0019
EMLLA I
[l‘muumumu"hm 0021 oy 0078 0023 . 0014 dlmmmm
|
EMLLA HYP+50 MLL T TEL UNKNOWN
27127 64/63 20/19 43142 79179 15115
Samples Samples Samples Samples Samples Samples
Sensit _| 0918 0.863 0.785 0.891 0917 0
Specif 0793 0.962 0.961 0.984 0975 1
Orlgmal Class sorted%
T T
0 50 100 150 200 250

Figure 19 prediction for unknown samples (the last 15 samples in the right).

2.8 Summary

The configBB.VarSel configures the necessary objects and specifies the right
parameters to make the entire process to work in different contexts and
testing strategies with the classification method of your choice. In addition,
the implementation of new classification methods is simplified providing
your specific fitness function in the classification.userFitnessFunc parameter
(type ?configBB.VarSel).

We have seen in this section how to build multivariate statistical models for a
classification problem using GALGO. So far, we have setup and performed a
basic analysis with the dataset included. In what follows is a more advanced
analysis explaining many of the available options in each step that can be
customized for particular data, classification methods, GA searches, user
defined fitness functions, error estimation, process parallelization, GA
parameters, and troubleshooting. In these sections it will be assumed that the
“quick tutorial” has been executed and that the reader is familiarised with the
concepts expressed there.

28

Victor Trevino and Francesco Falciani GALGO

3 Step 1 - Setting-up the Analysis

Once the reader is get used with a common GALGO run, we can introduce
more advanced customizations. Many of the options shown here are derived
from the help description in configBB.VarSel, configBB.VarSelMisc, and
BigBang. Examples for accessing the R help system are as following.

library (galgo)
?configBB.VarSel
?configBB.VarSelMisc
?BigBang

?plot.BigBang
?confusionMatrix.BigBang

vVVVVVYV

3.1 Data Source

The most common data source is a text file with tab delimited file (easily
processed in excel or any other spreadsheet program). The expected file
format is genes in rows and samples in columns. The first column must be
gene names, identifier, accession number, or anything to distinguish uniquely
the genes. The first row must contain the sample names, again unique values.
The second row is the class description for each sample, but it can be
optionally provided in a separated parameter. A common data file looks like

the following.

Samplel Sample2 Sample3 Sample4 Sample5
class classA classA classB classC classC
36237_at 10.2266 10.1613 12.0972 11.8012 10.9888
36238 at 10.2464 9.59952 9.00217 10.3131 11.2178

12.4709 13.1544 13.3683 13.3076 12.7597

36239 _at

To load this file, instead of the data parameter that is used when the data is
provided in an R matrix or data frame object, we use the file parameter as
shown below.

bb.nc <- configBB.VarSel (file="myfile.txt", ...)

configBB methods assumes that data has been normalized previously. GALGO
do not provide normalization methods to correct systematic errors, therefore
the user must normalize the data before the analysis. However, some
classification methods require that the data is standarized (mean=0,
variance=1), so careful attention must be paid to the scale parameter in order to
force configBB methods to standardize or not to standardize your data. By

29

Victor Trevino and Francesco Falciani GALGO

default, scale is performed when the classification method is "knn", "nearcent",

"mlhd", or "svm".

3.2 Classification Method

Currently, GALGO provides the coupling with 6 classification methods that
cover a broad spectrum of statistical and artificial intelligence techniques.
These are maximum likelihood discriminant functions (MLHD), k-nearest-
neighbours (KNN), nearest centroid (NEARCENT), classification trees
(RPART), support vector machines (SVM), neural networks (NNET) and
random forest (RANFOREST). These methods can be computationally
intensive; therefore, in order to improve performance, we have implemented
MLHD, KNN and NEARCENT in the programming language C. We
recommend their usage over the others if time is critical. All methods except
MLHD require specific parameters. In the tutorial (section 2), we have use the
nearest centroid method in order to compare the results with a similar
univariate method [application notes paper in bioinformatics].

3.21 MLHD

Discriminant analysis is a powerful technique designed to distinguish
between samples groups initially proposed by Fisher (Lattin et al. 2003). This
technique is equivalent to MANOVA turned around (Tabachnick et al. 2001).
Discriminant analysis considers the covariance and means of multiple
variables. The original proposed discriminant analysis is a linear combination
of the original variables that maximize the separation (linear discriminant
analysis).

MLHD refer to Maximum LikeliHooD, where Bayes’ rule is used as the
discriminant function designating a sample to the class with maximum
conditional probability. MLHD in the context of microarray classification was
tirst used by Ooi et al. (Ooi et al. 2003). The discriminant function relies on the
means for every gene in the GA chromosome for all classes and the pooled
covariance matrix for all genes in GA chromosome for all classes. The
mathematical relations are:

¢ =q|max(f,(e)) = f,(e)
where 4 is the mean vector in class g, X is the pooled covariance matrix, X, is
the covariance matrix for class g, M: is the number of training samples and Q

30

Victor Trevino and Francesco Falciani GALGO

is the number of classes. A unknown sample class c is designated as class g for
that f;(e) which is maximum.

MLHD works better with standardized data. Therefore the default for scale
parameter in configBB.VarSel is activated. We made a GALGO run with non-
standardized data and it still works. For configBB.VarSel, the parameter
needed is classification.method="mlhd”. GALGO uses this classification method
through the included mlhd_C_predict and mlhd_R_predict methods.

3.2.2 K-Nearest-Neighbour

For a given sample the nearest neighbour is the sample that is the closest.
Hence, a measure of distance is needed to determine how close two samples
are. Because of its generality, euclidean distance is preferred as distance

G
d, = ﬂ E(xia _xib)z
p

where G is the number of genes in the chromosome and a and b are samples.

measure which is:

For an unknown sample, the distance with all known samples is computed
and sorted. The smallest distance is the first nearest neighbour; the second
smaller is the second nearest neighbour and so on until consider the k closest
samples to the one being classified. The unknown sample is designated in the
same class than the majority of all k nearest samples. When there is a draw,
the sample is considered unclassified. If only two classes are used an odd
value for k is recommended to avoid a draw. A more stringent condition
would be that all k samples must pertain to same class, this force GA engine
search for better genes. It is important to experiment with both schemes
because the desired scenario is when all nearest neighbour are exactly the
same class, however sometimes is very difficult achieve this scenario.

The parameters needed for configBB.VarSel are classification.method="knn",
knn.k which is the number of neighbours to consider, knn.I which is the
minimum number of neighbours of the same class C needed to predict the
sample as class C, and knn.distance, which is the distance method used to look
for neighbours. The default values are 3, 1, and “euclidean” for knn.k, knn.l,
and knn.distance respectively. Several distance methods are available (see dist
and configBB.VarSel methods). KNN method is non-parametric, thus it does
not require the data follows a normal distribution. However, it is
recommended to standardize the data before the analysis, therefore scale
parameter is by default activated. GALGO wuses this classification method
through the included knn_C_predict and knn_R_predict methods.

31

Victor Trevino and Francesco Falciani GALGO

3.2.3 Nearest Centroid

For a given set of samples, the centroid is defined as the mean or median
value. The nearest centroid for an unknown sample is the centroid whose
euclidean distance is minimum.

The parameters needed for configBB.VarSel is classification.method="nearcent”
and nearcent.method, which specify “mean” or “median” centroids. Nearest
centroid method is non-parametric, thus it does not require the data follows a
normal distribution. However, it is recommended to standardize the data
before the analysis, therefore scale parameter is by default activated. GALGO
uses this classification method through the included nearcent_C_predict and
nearcent_R_predict methods.

3.2.4 C(Classification Trees

When expression levels of gene i in all samples from class A are different from
samples in class B, the expression to classify a new sample could be viewed as
if gene i expression level is greater than x then new sample would be of class
A otherwise new sample would be of class B. This approach is commonly
used in clinical diagnostics for proteins or metabolites. Sometimes a high
proportion of samples could be classified in this very simplistic approach,
however if the classes are not different enough, this approach fails in suitable
classification problems. A more generalized approach was derived using
several expression and variables in cascade. For instance, if gene i expression
level > 5 then class A else if gene k expression level < 4 then class B else class
A. In statistics this is called Tree Classifiers because it creates a tree structure
where the first node is the first expression and the branches are the results of
the expressions which in turn could be a new expression or a node called
terminal. The terminal node has no variable relation; instead the final decision
for the class is related to the node. This classifier is commonly used because
the interpretation involving logical relation between variables, values, and
classes is very simple.

GALGO wuse the package rpart to build the classification tree through the
included function rpart_R_predict. The parameter needed for configBB.VarSel is
classification.method="rpart”.

3.2.5 Neural Networks

In the brain, every neuron has axons and dendrites ends that are used to
communicate neurons. The basic function of neurons cells is produce a signal
response in all axons ends based on whether the stimulus signals in dendrite

32

Victor Trevino and Francesco Falciani GALGO

ends is greater than a potential action. Inspired on this knowledge, artificial
neurons have been defined as a mathematical function that produces an

output based on a weighted sum of inputs if the sum is greater than a
threshold (Mcculloch et al. 1990):

u(t) = E w(0)x;(f)
V(@) = [(U, +u(?))

where urstis the resting potential, xj(t) is the j input stimulus for sample ¢, w(t);
is the connection strength of stimulus j, u(t) is the total stimulus, f is the
function that transform total stimulus to output y(t). To train the neuron the
inputs are presented at xj(t) and the output y(t) is computed and compared
with the desired output thru relation:

WORIGESIGYAQ
Then in order to “learn” the weight are updated as:

w,(t+D) =w, @)+ Aw,(?)
Where wi(t+1) represent the new learned weight. The initial weights were
initialized to random values. When several artificial neurons are
interconnected it is called a neural network and different connection
configurations require slightly different or even specific learning algorithms.
The most common configurations are fixed in layers, where neurons from one
layer are connected with all neurons in previous and next layer but not
connected with neurons in same layer.

GALGO uses the package nnet to build neural networks as classifiers through
the function nnet_R_predict. The parameters needed for configBB.VarSel is
classification.method="nnet”, nnet.size, which is the number of units in the
hidden layer, nnet.decay, which is used for the weight training, nnet.skip,
which are used to add skip-layer connections from input to output, nnet.rang,
which are the range of the initial random weights (for details see nnet and
nnet_R_predict methods).

3.2.6 Support Vector Machines

Suppose that we plot every sample in a convenient plane distinguishing
sample class. In support vector machines (SVM) the convenient plane is called
kernel function and its purpose is to transform the data into a higher
dimensional space that allows a better and easier separation (Moore 2001;
Smola 2000). In PCA the kernel function is a linear transformation whilst in
SVM the kernel function can be customized. For classification purposes, the
best line that separate classes is that whose distance between the line and the
closest samples within classes are maximum (because it allows the highest
margin between those points). This margins concept has lately been

33

Victor Trevino and Francesco Falciani GALGO

recognized as a unifying principle for analyzing many different problem of
learning (Smola 2000). Hence SVM is now part of discipline called margin
classifiers.

GALGO use the package e1071 to build the classification tree through the
included function svm_R_predict. sum require several parameter, we have
used default values for many of them and leave available the more usually
needed. The parameters needed for configBB.VarSel are
classification.method="svm”, =~ svm.kernel, =~ which specify the kernel
transformation (“radial”, by default), svm.type, svm.nu, svm.degree, and
sum.cost (see svm, svm_R_predict, and svm_C_predict methods for further
details).

3.2.7 Random Forest

Random Forest uses an ensemble of decision trees (see classification trees
section) to build the classification rule. The final prediction is taken using a
maximum vote scheme considering all trees in the forest. GALGO use the
package randomforest to perform the classification through the function
randomforest_R_predict. More information and references for random forest
implementation and details are included in the randomforest package
documentation.

3.2.8 Classifiers Comparison

To investigate the effect of different methods in the same data under the same
conditions, we made a comparison collecting 1000 solutions using knn,
nearest centroid, mlhd, and svm. Figure 20 shows that, in overall there is a
good overlap between the top genes, however, each method have their own
preferred genes (most frequent genes changes slightly in ranks). However,
Figure 21 shows that the fitness evolutions are very different. Note that in the
case of SVM, a solution is found in average in 13 generations, where in knn it
last 89. In general, SVM is a very powerful method; unfortunately, it is very
slow.

34

Victor Trevino and Francesco Falciani

0 50 100 150 0 20 4 60
L L L L N

f.knn s o e . =
» et e 2
1% Soeds °
g . i
" f.near e,
B 2ney 20, . s
s26y e a0t
L P i
S f.mihd St g
e = :
B :
N oew f.svm
> Iy
X%
B

T T T T T T
150 0 20 40 60 80 100

Figure 20 Gene Frequency Comparisons of Different Classifiers.

3.2.9 User-Specific Classifier

GALGO

One of benefits of GALGO in R is that it is very easy to create new methods
based on the vast methods available. We have designed GALGO in such a
way to be flexible for the user to specify a third party classification method.

This can be attained by using the parameters classification.method="user"

classification.userFitnessFunc. However, the function specified there

’ and

must

follow certain rules. It must receive five parameters, chr which receive the

genes, parent which receive the BigBang object, tr which receive the training

samples, te which receive the test samples, and result which receive 0 for class
prediction and 1 for accuracy (for further details see configBB.VarSel method).
For example, the code below could be used as a user-defined function using

logitboost, and random forest as classifiers.

#EXAMPLE 1 : LOGITBOOST
#Install package boost from http://stat.ethz.ch/~dettling/boosting.html
library (boost)
#assuming 2-classes
logitboost_R predict <- function (chr, parent, tr, te, result)
{
d <- parent$data
s <- logitboost(d$data[tr, chr], d$iclasses[tr]-1, d$data[te, chr])
k <- ifelse(s[,ncol(s)] >= 0.5,2,1)

if (result) sum(k == d$classes[te])/length(te)
else k
}
bb.1lb <- configBB.VarSel(..., classification.method="user",

classification.userFitnessFunc=logitboost R predict)

#EXAMPLE 2 : RANDOM FOREST
#Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32
library (randomForest)
randomforest R predict <- function(chr, parent, tr, te, result) {
d <- parent$data
xrf <- randomForest (x=d$data[tr,chr], y=d$classes[tr],
xtest=d$data[te,chr], ytest=d$classes[te])
#if all (te==tr) resubstitution was specified, which is faster

ficonsidering that RF performs an internal cross-validation (out-of-bag)

35

Victor Trevino and Francesco Falciani GALGO

if (result) {
if (all(te==tr)) sum(xrf$predicted==d$classes[te])/length(te)
else sum(xrf$test$predicted==d$classes[te])/length (te)
} else {
if (all(te==tr)) xrf$predicted==d$classes][te]
else xrf$test$Spredicted
}

}
bb.1lb <- configBB.VarSel(..., classification.method="user",

classification.userFitnessFunc=randomforest_ R predict,
classification.train.error="resubstitution")

Fitness (All 1000 Chromosomes) Fitness (All 1000 Chromosomes)

knn-5-class near-5-class
— Mean (all)
Mean (unfinish)

T T T
0 50 100 150 200 0 50 100 150 200

Fitness
I
Fitness

06 07 08 08 10

7 ~—— Mean (all)
Mean (unfinish)

I
®

1
065 075 085 095

Generation Generation

5 Fitness (All 1000 Chromosomes)
Fitness (All 1000 Chromosomes) mihd-5-class
svm-5-class

1.00

080

Fitness
0.90
L
Fitness
080
Ly

0.80
!

— Mean (al) 27 — Mean (al)
Mean (unfinish) Mean (unfinish)
T T T T T :

T T
0 20 40 60 80 0 50 100 150 200

0.70

Generation Generation

Figure 21 Comparison of fitness evolution in different classifiers.

3.3 Error Estimation

A very important issue in the development of a statistical model is the error
estimation. There are several methods to estimate this quantity but they are
all based on the fundamental principle that the most accurate procedure to
estimate the degree of generality of a model is to asses the classification
accuracy on a set of samples that has not been used to develop the model
itself. Regarding this, classical approaches involve splitting data in training
and test sets (see BOX 1). The training set is used to train the parameters of
the classifier whereas the test set is left aside and it is used to asses the
classification accuracy of the selected chromosomes at the end of a BigBang
(see section 1.5). The fitness function uses the classification accuracy of the
model on the training samples to assign a score to each chromosome and
make possible the selection of better predictors through the law of natural
selection. There are different ways to estimate the error during training. The
most obvious one is to further split the training set into training and

validation sets.

36

Victor Trevino and Francesco Falciani GALGO

Data
[r.c]
2/3* 1/3 *

{random}

Test
[*s,r.c]

L*weights

Test Fitness
(final process)

*{k-folds,random,
resubstitution}

Training
[ks,r,cl

Validating
[k *s,r,cl

Training Fitness on validate set
(evolutionary process)

Figure 22 Error Estimation. The data is split s times randomly to generate train and test set
proportional to 2/3 and 1/3 of samples respectively. r represent genes and ¢ samples. These
sets are used to compute the test error in the model selection process. Train set is split
further into training and validating set to compute the train error in the evolutionary
process (inside the Genetic Algorithm). All parameters marked with a star are
configurable.

GALGO first splits the data, several times, into training and test sets (Figure
22). The second level consists in dividing each first-level training set into
many second-level training and test sets, which is controlled by the
classification.train.error parameter. The evolutionary process uses only these
second-level sets remaining blind to the first-level test sets. This is controlled
by the parameter classification.mode. GALGO chooses the appropriate data
split according to the size of the training dataset according to the following
formula:

number of random splits is the number of samples
s = min (150, ncol(data))

number of k-folds

k = round (13 - ncol(data)/11)

but inside the range 3..number of samples

kfolds = max(min(k, ncol(data)), 3)

In our case study in the quick tutorial, 233 samples are divided into 156 and
77 samples in the first level (two thirds for training and one third for test,
which is controlled by the train and test parameters). Then, in the second
level, the 156 sample set is divided into three sets, all of which contain 52
samples. Thus, in the evolutionary process, the fitness function would use
only 156 samples in three cycles (the fitness function would be called three
times). Each cycle use one of the 52 sets as test samples and the remaining 104
samples as training. The splitting of samples is random and considers the

37

Victor Trevino and Francesco Falciani GALGO

possible different number of samples per class, always trying to end up with
the same class proportions than the original set. These behaviours and others
can be customized through parameters (see reference manual for
configBB.VarSel method). Finally, GALGO compute a large number of first-
level splits in order to have a better estimation of the test error independent
on the initial split. So, the final test error outside the blast process is estimated
using the test set in all these first-level splits controlled by the parameter
classification.test.error. For the data in the quick tutorial, the first-level split was
done 150 times. Therefore, the test error estimation will call the fitness
function 150 times using 156 samples for training and 77 samples for testing.

By default, the final error (outside the blast process) use only test samples for
the estimation. However, this can be changed by using classification.test.error
vector, which must contain 2 values interpreted as weights in training and
test respectively. The error inside the evolutionary process (in blast or evolve
methods for BigBang and Galgo objects respectively) can be computed using
“kfold” (k-fold-cross-validation), “loocv” (leave-one-out-cross-validation),
“splits” (random splits), and “resubstitution”. The number of folds in “kfold” is
specified by classification.train.Ksets parameter and the percentage of splitting
is controlled by classification.train.splitFactor parameter. For example, let create
a BigBang object using configBB.VarSel to estimate the final error as
.632Bootstrap method (Efron et al. 1993) as 0.632 weight for test and 0.368 for
train, the train error as 10-fold-cross-validation, and the first-level splitting as
0.5 and 0.5 in only 20 splits.

bb <- configBB.VarSel(..., train=rep(0.5, 20),
test=rep(0.5,20), classification.test.error=c(0.368,
0.632), classification.train.error="kfolds",
classification.train.Ksets=10)

By default, the evolutionary process would evolve under the first split only.
However, for example, if the user would like to change this behaviour
selecting a different split in every BigBang cycle, the following code could be
used.

bb <- configBB.VarSel(...)

bb$callPreFunc <- function (xbb, xgalgo) {
xbb$data$selSplit <-

sample (length (xbb$data$splitTrain) ,1)
TRUE

}

Inside a BigBang object, callPreFunc will be called just before calling evolve of
the GA (Galgo object).

38

Victor Trevino and Francesco Falciani GALGO

Finally, the relevant variables for error estimation inside the BigBang object
configured by configBB.VarSel method are:

> names (bb$data) # not all variables shown

selSplit Selected split for training error evaluation. By default set to 1.

splitTest A list containing vectors which specify the samples used as
test. Each element in the list corresponds to one split.

splitTrain A list containing vectors which specify the samples used as
training. Each element in the list corresponds to one split.

splitTrainKFold A list containing lists which specify the samples used as
training. Each element in the list corresponds to a list that
contains the samples used for training in each “k-fold”, which
are used for all partitioning schemes in classification.train.error.

splitValidKFold ~ Similar to splitTrainKFold but containing the validating (test)
cases.

testErrorWeights Vector containing the default weights for train and test to
estimate the final error. It can be overwritten in several
methods by the parameter set.

splitAll List containing vectors which contain the samples used in that
particular split (splitTest+splitTrain).

3.4 BigBang Object Configuration

The BigBang object is composed of methods and properties (variables). The
most important methods are the plot method, which were explained in
sections 2.4, 2.5, 5, and 6, and the blast method. In this section we will explain,
in general terms, how the blast process works and what is the meaning of
variables included in the BigBang object.

3.4.1 Blast Process
1. Initialize Timings
2. While maxBigBangs and maxSolutions has not been reach do
2.1. Initialize Galgo and generate new random population
2.2. If the result from calling callPreFunc is NA then exit while
2.3. Evolve Galgo
2.4. Save Formatted Best Chromosome from Galgo
2.5. If the result from calling callEnhancerFunc using the best chromosome
is not NULL
2.5.1. Save original chromosome in evolvedChormosomes
2.5.2. Replace Best Chromosome with the result of callEnhancerFunc
2.6. If the result from calling callBackFunc is NA then exit while
2.7. Increase current bigbang and solutions (if any)

39

Victor Trevino and Francesco Falciani

GALGO

2.8. If saveFrequency then call saveObject

2.9. If gcFrequency then call gc

3. Call saveObject

4. End

3.4.2 Variables in BigBang Object

> names (bb)

bb
bestChromosomes
bestFitness

call
callBackFunc

callEnhancerFunc

callPreFunc

classes
collectMode
data

elapsedRun
elapsedTime
evolvedChromosomes

evolvedFitness
galgo

galgos

gcCalls
gcFrequency
geneNames
generation
iclasses

id

leftTime
levels

main
maxBigBang
maxCounts

Numeric. Current BigBang cycle

List of formatted evolved or refined chromosomes.

List of numeric values with chromosome fitness.

The original call made to create the BigBang object.

Function to be called after the galgo evolution. If the result is
NA, the blast process will end.

Function to be called after the galgo evolution. If the result is
not NULL, it is assumed it represent a refined chromosome,
which is saved in bestChromosomes.

Function to be called before the galgo evolution. If the result is
NULL, the process will end.

Class of the samples (if any).

Type of object to be saved (see BigBang method).

Any user data. configBB.VarSel methods store here the data, the
splits and many other values.

Elapsed time of galgo process in seconds.
Elapsed time of the whole process.

When callEnhancerFunc is provided, stores the original
chromosomes.

When callEnhancerFunc is provided, stores the original fitness.
Galgo object to be evolved. This should be properly configured.
configBB.VarSel methods configure it depending on the
parameters.

If collectMode=="galgos” it stores the galgo object for each
evolution.

Number of calls to garbage collector.

How often the garbage collector will be called.

Names of the genes.

Numeric vector with the last generation of galgo evolutions.
Integer representation of sample classes.

Id of the BigBang object.

Remaining Time.

Levels of sample classes.

User title for plots.

Maximum number of BigBang cycles.

Resolution of the generankstability plot.

40

Victor Trevino and Francesco Falciani

GALGO

maxFitnesses List of numeric values with the evolution of the best fitness
across generations in every galgo.

nClasses Total number of classes.

onlySolutions Specity if only solutions reached should be saved.

running Flag indicating if the BigBang is inside the blast process.

sampleNames Names of samples.

saveFile Name of the file to save the BigBang object.

saveFrequency How often (in BigBang cycles) the file should be updated.

saveGeneBreaks Used to cut values of genes when they are continuous. For
variable selection problems, it contains the integer intervals.

saveMode Type of saving.

saveVariableName The name of the variable that will be used to save the object.

solution Logical vector indicating whether the galgo reach solution.

solutions The total number of solutions saved.

startedTime The start time.

timing Numeric vector indicating the elapsed seconds in each galgo
evolution.

userCancelled Flag indicating that the user cancelled the process through
callBack mechanism.

verbose The level of messaging.

(any other variable)

User variable or temporal/cache variable used to speed up
processes.

3.4.3 Chromosome Formatting Scheme

The BigBang object stores the chromosomes formatted instead of the original
chromosome object. This resulted in memory and performance improvements
when the number of chromosomes to save is large. By default, the
chromosomes are converted to a numeric vector and saved. However, if the
user needs to save the chromosomes in the original object or any other format,
it can be attain overwriting the formatChromosome method, using the following
code.

setMethodS3 ("formatChromosome",
function(.bbO, chr, ...) {
chr

"BigBang",
})

3.5 $data Configuration

The configBB.VarSel methods create the data variable in the BigBang object. In
the error estimation section we showed the variables created regarding the
error estimation scheme. The table below shows the others variables created.

41

Victor Trevino and Francesco Falciani GALGO

> names (bb$data)

classes
classFunc

classificationMethod
data

fitnessFunc

iclasses

modelSelectionFunc

predictFunc

scale

Factor. The samples classes.

Function that predict the class for a given chromosome. The
default is classPrediction method.

The name of the classification method.

The transposed data.

Function that computes the accuracy of a given chromosome.
The default is fitness method.

Integer representation of classes.

Function to be used to compute the generalized final error. It
depends on splits and set. The default is modelSelection
method.

Function to compute the accuracy or class prediction of test
samples based on training samples and a chromosome. The
default depends on the method. It can be mlhd_R_predict,

mlhd_C_predict, knn_R_predict, knn_C_predict,
nearcent_R_predict, nearcent_C_predict, svm_C_predict,
sum_R_predict, nnet_R_predict, rpart_R_predic, or

randomforest_R_predict.
Logical. Describe if scale was used (mean=0, variance=1).

3.6 Genetic Algorithm Configuration (Galgo Object)

3.6.1 evolve Process

1. Initialize generation=0

2. While maxGeneration has not been reach

2.1. evaluate all chromosome populations

2.2. Save the best chromosome
2.3. If the result of callBackFunc is NA then exit while
2.4. If goalFitness has been reach then exit while

2.5. Generate progeny for all chromosome populations doing the following
2.5.1. Call migrate (for world objects)
2.5.2. Generate offspring by “natural” selection
2.5.3. Perform crossover
2.5.4. Call mutate

3. End

3.6.2 Fitness Function

The default fitness function is fitness (type fitness in R) which is defined as:

42

Victor Trevino and Francesco Falciani GALGO

fitness <- function(chr, parent) {
d <- parent$data
s <-0
tr <- d$splitTrainKFold[[d$selSplit]]
va <- d$splitValidKFold[[d$selSplit]]
for (k in l:length(tr))
s <- s + d$predictFunc (as.numeric(chr), parent,
tr[[k]], va[[k]], as.integer(1l))
s/length (tr)

parent, in the above code, is assumed to be the “blasting” BigBang object. Note
the wusage of the variables inside parent$data, splitValidKFold and
splitTrainKFold, which contain the second-level train and validation (test) sets
used to estimate the error (see “$data Configuration” section). Thus, this
function returns the average test error in all the second-level validation folds.
That is, the fitness in the evolutionary process is completely blind to the first-
level test set. Different criteria can be implemented overwriting this function
before creating the bigbang object simply by assigning a new function to
fitness. predictFunc contains the specific function needed for the classification
method of our choice. Thus, predictFunc, as shown in the “$data
Configuration” section above, can be any of mlhd_R_predict, mlhd_C_predict,
knn_R_predict, knn_C_predict, nearcent_R_predict, nearcent_C_predict,
svm_C_predict, sum_R_predict, nnet_R_predict, rpart_R_predict,
randomforest_R_predict or a user function with similar parameters (see User-
Specific section above or Setting-up non-classification problems section
below).

3.6.3 Offspring

The scaling method (in Niche object) converts the fitness value to a weight or
probability for the chromosomes to be selected to generate progeny for the
next generation. By default, the model used is:

P = scaleFac * max(0,fitness - meanFac * mean (fitness)) *powFac

The previous model generates large values for fitness above the mean and
small values for fitness below the mean. The default values used by
configBB.VarSel are 1, 0.85, and 2 for offspringScaleFactor, offspringMeanFactor,
and offspringPowerFactor respectively.

To change this scaling mechanism, the user needs to overwrite the scaling

method in Niche before creating any Niche object, thus before calling
configBB.VarSel. The code below is an example.

43

Victor Trevino and Francesco Falciani GALGO

setMethodS3 ("scaling", "Niche", function(ni, ...) {
code to return a weighted vector
which must depend on ni$fitness

})

The default offspring method use random generated number weighted using
the scaling method to select the chromosomes to be replicated. The length of
population of chromosomes is static. To change the offspring mechanism, just
replace the offspring method in the Niche object similarly to the replacement of
the scaling method shown above.

3.6.4 Crossover

The default crossover method performs 0.5n crossovers where n is the
population size of the Niche, which is the result of calling crossoverFunc
variable stored in the Niche object. For this, it uses the crossoverPoints variable
which configBB.VarSel set to 1 at the middle of the chromosome. These can be
changed using crossoverFunc and crossoverPoints parameter in configBB.VarSel.
The other possibility is to replace the crossover method in the Niche object as
in the offspring example shown above.

3.6.5 Mutation

The default mutation method performs n mutations where 7 is the population
size of the Niche, which is the result of calling mutationFunc variable stored in
the Niche object. These can be changed using mutationFunc parameter in
configBB.VarSel. The other possibility is to replace the mutate method in the
Niche object as in the offspring example shown above.

3.6.6 Elitism

The default elitism is a probability vector, which contains 1 nine times and 0.5
1 time. This means elitism on in 9 consecutives generations followed but
elitism with probability 0.5. Generation 11 to 20 behave similar to generation 1
to 10 (it is a circular vector). Elitism can be changed to a fixed value or to a
function in the elitism parameter in configBB.VarSel. Elitism has a great impact
in the search (see later sections).

3.6.7 Migration

The default migration (immigration) is a probability vector, which contains 0
18 times, 0.5 once, and 1 once. As elitism, immigration values can be a fixed

44

Victor Trevino and Francesco Falciani GALGO

value or a function. However, elitism applies to a Niche objects whereas
immigration applies for World object instead. Anyway, migration is turned off
because by default the number of niches is 1.

3.7 Setting-up non-classification problems

configBB.VarSel assumes that a classification problem is being set up, there is
however, a configBB.VarSelMisc method, which does not make this
assumption. The major difference is that the fitness function must always be
provided in the parameter fitnessFunc. This fitness function must follow the
prototype shown in the user-specific classifier section (function (chr,
parent, tr, te, result)) which is executed exactly as shown in the
fitness section. An example of linear regression is shown below (additional
examples are provided in Regression section at the end of this tutorial).

reg.fitness <- function(chr, parent, tr, te, res) {
try <- parent$data$dependent[tr]
trd <- data.frame (parent$data$data[tr,as.numeric(chr)])
trm <- lm(try ~ ., data=trd)
tey <- parent$data$dependent[te]
ted <- data.frame (parent$data$data[te,as.numeric(chr)])
cor (predict (trm,newdata=ted) , tey) *2

}

In this code, reg.fitness is the function that makes the user computations
depending on the chromosome, the parent BigBang object, a set of training
samples to learn the model parameters, and a set of testing samples to asses
the fitting. However, the specified fitness function coding is up to the user
because the only requirement is that it should return a value representative of
how good the chromosome chr is in its appropriate context limited to range
between 0 (completely unfitted) and 1 (completely fitted). Recall that the user
titness-function is executed in a context of training and test scheme driven by
fitness, a pre-defined function which can be replaced to perform custom code
(see fitness section). In this sense, the user can really execute any sensible code
in these two-levels (replacing the global fitness or providing a local user-
specific fitness-function), which may or may not follow the structure shown
in this tutorial.

3.8 Setting-Up the Analysis Manually

To set-up the analysis we have to create a BigBang object, which contain a
prototype Galgo object that would be used to evolve models resulting in
chromosomes to be stored for further analysis. In turn, the Galgo object needs
the fitness function, populations of chromosomes, and GA parameters. The

45

Victor Trevino and Francesco Falciani GALGO

population of chromosomes can be a list of Niches or World objects. Niches
contain Chromosomes objects, which in turn contain Gene objects.
configBB.VarSel and configBB.VarSelMisc wrapper methods will configure all
these objects in order to facilitate common tasks. However, these methods do
not consider all possible scenarios. The task of creating all objects is in some
how, tedious and perhaps complex. To avoid all the work needed, in some
cases, we could use these wrappers to build a prototype BigBang object, then
replacing the variables inside the object as desired. Other option is creating all
objects by hand. To illustrate this process, we will use pseudo-code similar to
those implemented in the wrappers functions.

First we must create (and print) Gene objects as the following examples (see
Gene object typing ?Gene in R).

genl <- Gene (shapel=1, shape2=100,
generateFunc=function(g,n,shl,sh2) runif(n,shl,sh2))
genl

or

gen2 <- Gene (shapel=0, shape2=1, generateFunc=
function(g,n,shl,sh2) rnorm(n,shl,sh2))
gen2

Then, we create a chromosome prototype object.

chrl <- Chromosome (genes = newCollection(genl, 5))
chrl

The code above creates a Chromosome object that contains the same gene
prototype (different gene objects though). However, a Chromosome may
contain different gene prototypes.

chr2 <- Chromosome (genes =
list(clone(genl) ,clone(gen2) ,clone(genl) ,clone(genl)))
chr2

clone is important because we need to add an independent new instance of
that object.

Now, we can create a Niche object from chromosomes as in the following
code.

nichel <- Niche (chromosomes = newRandomCollection (chrl,
50))
nichel

46

Victor Trevino and Francesco Falciani GALGO

Because Galgo object can operate using Niche or World objects, the creation of
World object is optional. Let create one using the following code.

worldl <- World(niches = newRandomCollection (niche, 3),
immigration=0.01)

We can create now, the Galgo object using a code similar to the following.

galgol <- Galgo(
populations=newRandomCollection (worldl, 1),
goalFitness=0.666,
minGenerations=50,
maxGenerations=500,
verbose=1,
fitnessFunc=??"?)

So far, we have created a Galgo object which can be used to evolve solutions.
We will need to build a BigBang object if and only if we need to analyze
several solutions and we would like to acquire solutions automatically.
Otherwise, the Galgo object created would be enough to get an individual
solution. For example using the following code.

> evolve (galgol)
> best (galgol)

Finally, the BigBang object can be created as in the following code.

bigbang <- BigBang(galgo=galgol,
maxBigBangs=100000000,
maxSolutions=99999999,
saveFile="manual-blabla.Rdata",
saveVariableName="bb.manual",
data=...,
main="manual bb")

3.9 Extending Objects

In object oriented programming (OOP), an important issue is the creation of
sub-classes of previously defined objects, commonly referred as extending or
inheriting object definition. In GALGO, objects can be extended very easily, for
instance let extend the Gene object then create chromosomes that consist on
this objects instead using the following code.

#define a new object
setConstructorS3 ("MyGene", function (myValue=0,...) {

47

Victor Trevino and Francesco Falciani GALGO

extend (Gene(...), "MyGene", myValue=myValue)

})

#create a new mutate operator
setMethodS3 ("mutate", "MyGene", function(object, ...) {
})

gen3 <- MyGene (shapel=0, shape2=10, myValue=2)
class (gen3)

chr3 <- Chromosome (genes=newCollection(gen3,3))
chr3

The code above is only illustrative, the Gene and any other object can save
any user variable. However, this example illustrates how different objects can
be built and extended preserving the expected behaviour (of Chromosome in
this case).

3.10 Summary

We have reviewed several options to set-up an analysis that can be more
convenient for a given problem. These options range from simple changes in
parameter configurations in configBB.VarSel to creating the BigBang object
entirely by hand. We have seen that GALGO can be configured to non-
classification problems relatively easy.

48

Victor Trevino and Francesco Falciani GALGO

4 Step 2 - Evolving Models / Chromosomes

The evolving step is the more time consuming part of the process. Our aim in
this section is to understand the output generated and how to change it for
our own purposes. We will assume that configBB.VarSel has been used to
configure the BigBang object.

4.1 Outputs

The default output shown below from running the blast method really
consists on two contiguous outputs. Lines starting with [Bb] meant the output
of the blast process for the BigBang object. Lines starting with [e] meant the
output of the evolve method in the galgo object inside the BigBang. This
output is controlled by bigbangVerbose and galgoVerbose parameters (type
?configBB.VarSel, ?Galgo and ?BigBang in R), which can be cancelled by
assigning 0.

[Bb] Starting, Solutions=300

[Bb] #bb Sol Last Fitness %Fit Gen Time Elapsed
Total Remaining

[e] Starting: Fitness Goal=0.9, Generations=(10 : 200)

[e] Elapsed Time Generation Fitness %Fit [Next Generations]
[e] Oh Om Os (m) 0 0.64103 71.23% +++++++.. .+
[e] Oh Om 6s 20 0.87179 96.87%t
[e] Oh Om 14s 40 0.87179 96.87%+..+.....+.+...
[e] Oh Om 22s 60 0.92308 102.56% +

[e] Oh Om 22s ke ke 61 0.92308 102.56% FINISH: 2164 1612...
[Bb] 300 299 Sol Ok 0.92308 102.56% 61 22.16s 3722s

4054s 14 (Oh Om 14s)

Looking at the first line and second lines of each output, the values are self-
explained. For the section [Next Generations] a “+” means that the maximum
fithess has increased, “-“ means that has decreased, “.” means that has no
changed, and “G” means that the fitness goal has been reach but a
termination criteria has not been fired. See section 2.3 for details.

The default graphical output is the plot of three “diagnostic” plots as shown
in Figure 7 (see section 2.3 for details). This output can be changed specifying
the parameter callBackFuncBB as below.

bb <- configBB.VarSel(...,callBackFuncBB=function (xbb,

galgo) { plot(xbb,type=c("fitness", "generankstability"),
mord=100)})

In general, callBackFuncBB can be any code computing any desired
computation. For the graphical Galgo output shown in Figure 8 the options

49

Victor Trevino and Francesco Falciani GALGO

are more limited, however, section 2.3 explains how to activate it using
callBackFuncGALGO parameter. Again, using this parameter, in general, the
user can perform any kind of computation.

4.2 Process Interruption

As explained in section 2.3, the blast process can be interrupted by pressing
Esc in windows or Ctrl-C in “Unix” to perform a pre-analysis and then
resumed later using the blast method again.

4.3 Adding and Merging Solutions

Sometimes we end up with a number of solutions which are not sufficient in
which case we could use the blast method specifying the add parameter to
force to search for more solutions. Other situation arises when we have
performed several isolated GALGO searches and we would like to “merge”
them and perform a “joint” analysis. In this case one could use the method
“mergeBangs” (type ?mergeBangs.BigBang in R) to merge chromosomes from
different BigBang objects. Another situation is when we have a certain
number of solutions which we believe are not enough for “rank stability” and
we would like to know more precisely how many solutions we need to get
more stable ranks. To have an idea, we can duplicate randomly previous
solutions and see how the “generankstability” plot behaves. Once we have
added enough solutions, we have an estimate of the total number of solution
needed. Of course this is not ideal because we are duplicating original
solutions, but at least we can have a very good estimate in few seconds. To do
this, use the addRandomSolutions method (see method description typing
?addRandomSolutions.BigBang).

50

Victor Trevino and Francesco Falciani GALGO

5 Step 3 - Analysis and Refinement of Chromosome
Populations

Most of the plots shown here are sensitive to the number of desired genes to
analyse, the mord parameter, and the chromosome population to analyze, the
filter and subset parameter. The gene colouring is defined by rcol and mcol
parameters. mcol is the number of “automatic” colours, and rcol are the
absolute colours (type ?plot.BigBang for details).

5.1 Analysis of Gene Frequencies and Ranks

In this section we will review the plots and methods implemented in GALGO
regarding the occurrence of gene in models.

5.1.1 Gene Frequency

Shows the number of times (in vertical axis) a gene (or variable, in horizontal
axis) has been present in a population of chromosomes. By default, the 50
most frequent genes are coloured in 8 different colours (with slightly different
intensities). Figure 23 shows the gene frequency for all genes colouring the
100 most frequent genes (1mord=100).

plot(bb.nc, type="geneFrequency", mord=100)

f <- geneFrequency (bb.nc) #as a numeric table

f

sort(f, decreasing=1)[1:50] # show 50 most freq genes

vVVVYyV

Gene Frequency (All 1000 Chromosomes)
NearCent-5-Classes-ALL-Data

35974 _at o
3 B 41097_at - S
4 ©
[

§ ° 36239_at 37280_at £
R i o200 g B

345133[38212 at 38918 at 36937_s_at 7a(_
o _| - - [
0 [rs)

| L] | H L
° . wlle il .L u‘l\ H.\ e h oy Ll J\ an In A.MLJ ‘”'|" ‘I‘ | l“..;l.,. e lld M‘m n il |.‘\. . LJ °
o

0 500 1000 1500 2000

Gene

Figure 23 Gene Frequency. Left axis shows the number of times the gene has been present
in chromosomes. Right axis marks the corresponding percentage relative to the total
number of chromosomes. Horizontal axis shows the value of the gene in the chromosome.
Only the first “colour section” is labelled with their corresponding gene names.

As an example, let compute the gene frequency of the “better models” from
the training fitness, as follows.

> bf <- unlist(bb.nc$bestFitness)

51

Victor Trevino and Francesco Falciani GALGO

> better <- bf > median (bf)

> plot (bigbang, type="geneFrequency", subset=better)

> fb <- geneFrequency (bb.nc, subset=better)

> plot(as.numeric(f), as.numeric(fb), pch=20, main="Freq
vs Freq(better)")

Figure 24 shows that the frequency of the genes in all solutions is very high
correlated with the gene frequency of the better models, which suggest,
roughly, that the better models do not have preference in genes (in this
population of chromosomes).

Freq vs Freq(better)

as.numeric(fb)
30 40 50 60
1

20

o] T
2t
o | &%
T T T T
0 50 100 150

as.numeric(f)

Figure 24 Gene Frequency Comparison.

5.1.2 Gene Ranks

Shows the frequency (vertical axis) of most frequent genes ordered by rank
(horizontal axis).

> plot(bb.nc, type="generank")
> r <- geneFrequency(bb.nc, value="rank")
> which(r == 1)

Gene Rank (All 1000 Chromosomes)
NearCent-5-Classes-ALL-Data

o 2
re] e}
~ N
®

o
(= S~
o <'® - o
N ~, | o~

S~

n?_

L .
> 8 — L [&
o & =R - =
c ND [B®m ©
o (o N©) L !
= SRWOT PG .
® g | ODSE o el OF e T | &
T TI02 °98, O Co O B § I 2

wn - © L [LRLRG R R~

D O~

IINDOD mwﬂr\bmwmf' 1 © 00,

N~ D ©n DI~ _ Iy POD G~ 0
NHO DO ©RODNDOxm SO0 i °
[=3 A N0 O o O-T 0o X - &
s} ~ O L POH)

| 1]]]1 N

I] | |‘ |(‘ (\|
o
o 4 I L R
o

Gene Rank

Figure 25 Gene Rank.

52

Victor Trevino and Francesco Falciani GALGO

5.1.3 Stability of Gene Ranks

Because we have assumed that the gene frequency is related to the
importance (Li et al. 2001), it is important to check if the ranks are reasonable
stable. We have designed a plot for showing the rank “changes” when
solutions were being evolved in vertical axis. The n most frequent genes are
shown in horizontal axis sorted by rank. When genes have many changes in
ranks, the plot displays different colours; hence several changes in colours
(and which specific colours) indicates instability. Commonly the top 7 “black”
genes are stabilized quickly, in 100 to 300 solutions, whereas low ranked
“grey” genes would require thousands of solutions to be stabilized. The fact
that the ranks are stable is in somehow important, because if ranks are
affected by random variations, similar runs would end up in different ranks,
in which case the chromosomes are not representative of the entire population
of possible solutions.

> plot(bb.nc, type="generankstability")

Gene Rank Stability (All 1000 Chromosomes)
NearCent-5-Classes-ALL-Data

400
40%

— 1097 _at

—6239_at

— 7 280_at

—30536_at

—325_at

-—24583_at

P P

—1065_at

—78_at

-—554_at

—38968_at

32207 at

—39389 at

at

-1287_at

200
I
a
a
t
at
T
20%

-—6937_s_at

-35350_at

—38242_at
7

-1096_g_at
-36638_at

-39781_at

-0

—5974_at

Rank + Frequency
-400 -200
| 1
T
0%

-600
1

-800
I

-1000

Genes

Figure 26 Stability of Gene Ranks.

5.1.4 Rank Index

This plot shows the ranks of all genes (horizontal axis) and their frequency in
log scale (in vertical axis) to highlights small frequencies and compact high
frequencies.

53

Victor Trevino and Francesco Falciani

> plot(bb.nc, type="rankindex", cex=.9)

Rank-Index (All 1000 Chromosomes)
NearCent-5-Classes-ALL-Data

GALGO

1 ©
~ s, S . B
o
2 T 5,
-
S . a8
[l o & ® A e
. ® 2 I © ®
s 0 ™) ol
© - © ¢ I 0 B
! s oY 4 = 88 5
- © = () O -
0 @ o * ® ®, =3} - ®® O
0 < D © ~ * 5,' 5
3 G Lo | o, ® © = A . ©
o | ¢ @, o T IS A g ® oo ! L
~ - o5 s 3 2% ~®e B
D v 805 B 2 Wk ®S’ =B
'8 * 5 ® W0 o | —
o 5 . ® M W ® P S
S = ® . #EDQ . <
~ pad O .
a5 v . =)
~ . .
g ¢ #e
o
14 - . . -
© . ¢ . * . PR3 e T % .
. s ¢ . .
8 * . \ ¢ . ¢ ’» M . . M o * e
= . o e . ¢ *e RINE . ¢ " ¢
- - - .o - . .
. oo o . o0 oee o o . e ° o0 o0 @ o
. ¢ s000 - . . o - . . w e e (3RS
* 0000 00 o0 w we ¢ oo s o o . . e 40 o 06 o oo
. ses s m e ¢ e 40 0 0es B00 sme ww wes me o o o o s e o o0
GG O WEGID DI PBUNDH @ PO KD $00 00 0 HP S DIDO WS DINOES WHH W We 6 & @ o
o
o _| —
o
-~
T T T T T T
Gene Index
Figure 27 Rank Index.

5.1.5 Gene Frequency Distribution

161

94

66

22
Frequency

11

Figure 28 shows the distribution of gene frequencies in horizontal axis and the
number of genes, in log-scaled vertical axis, with that particular gene

frequency.

> plot(bb.nc, type="genefrequencydist")

Gene Frequency Distribution (All 1000 Chromosomes)
NearCent-5-Classes-ALL-Data

500

Genes
50

T UHIL o o

[

17 20 23 26 30 34 38 43 47 60 71

02468 11 14

Gene Frequency

Figure 28 Distribution of the gene frequency. Vertical scale is logarithmic.

94 148

54

Victor Trevino and Francesco Falciani GALGO

5.1.6 Number of Genes and Frequency

Figure 29 shows the number of genes that have frequency higher that any
frequency (similar to a cumulative distribution function). For example, there
are approximately 55 genes with frequency higher than 20 (marked with a
vertical dotted line).

> plot(bb.nc, type="topgenenumber")
> abline(v=20, 1lty=3, col="grey")

Genes vs Frequency (All 1000 Chromosomes)
NearCent-5-Classes-ALL-Data

606 367 188 107 55 14 4
! | I ! | I |

|

500
1
<

Genes With Higher Frequency

T T T T T T T
1 2 5 10 20 50 100

Gene Frequency
Figure 29 Genes higher than any frequency. Bottom horizontal axis is gene frequency in

logarithmic scale. Top horizontal axis is the approximate rank for marked frequencies
which should be similar to the number of genes in vertical axis.

5.1.7 Top Ranked Genes Used by Models

Because we would use top-ranked genes for generating models (see section 6),
one important decision is how many genes to use as “top-ranked genes”. One
factor to make decision could be how many genes are actually present in the
chromosome population. Figure 30 shows that 416 of the total of 2435 genes in
the dataset are present in the example ran here. Now, because there are genes
that appear frequently in chromosomes, Figure 30 shows the number of
genes present in all chromosomes and the number of top-genes needed to
cover fractions of them. This could help to decide how many genes to select
covering more or less genes in chromosomes as criteria. For instance, the top
14 genes are the 25% of all different genes present in chromosomes. This is
because these genes are highly repetitive in chromosomes.

> plot(bb.nc, type="genecoverage")

55

Victor Trevino and Francesco Falciani GALGO

#Top Ranked Genes Used By Models (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

o L
- 2413, 100%
o
g 2
o
£ N 136 ,75%
3 o
3 °
2 7 »"759,50%
g < |
» © o
()
C
& o ""56,25%
o
® Mk//»
o |
= T T T T T T 1 T T
1 5 10 50 100 500 1000
Top Ranked Genes

Figure 30 Number of Top Ranked Genes Used by Models.

5.1.8 Top Ranked Genes in Models

> plot(bb.nc, type="genesintop")
> abline(v=1logl0(100) , lty=3, col='"grey")

Top Ranked Genes Within Models (All 1000 Chromosomes)

NearCent-5-Classes-ALL-Data
0.2% 0.4% 0.8% 2.1% 41% 8.2% 20.5% 411% 82.1%
| | | | 1 | | | I

T
80%

T
60%

200 400 600 800 1000
|
T
40%

Models (Chromosomes)
T
20%

O=2NWhHrOM

0
!

0%

5 10 20 50 100 200 500 1000 2000

Top Ranked Genes

Figure 31 Distribution of the Number of Top-Ranked Genes within Chromosomes.

For example, using 100 top-ranked genes, there are approximately 50% of
models that contains 3 of these 100 genes, 30% containing 4 genes, ~17%
having 2 genes, and ~4% with 5 genes (Figure 31). That is, if we use 100 top
genes and remove all other genes from the chromosomes, these values are the
result of the distribution of these shrunken chromosomes.

56

Victor Trevino and Francesco Falciani GALGO

5.2 Analysis of Models

5.2.1 Overlapped Genes in Models

Figure 32 shows the composition of the models in terms of top-ranked genes.
By default, the chromosomes are sorted by its most top-ranked genes; hence,
chromosomes with similar top-ranked-genes are stacked together.
Chromosomes are shown in vertical and genes in horizontal. For example, we
can see easily which genes has been combined with the first top-gene.

> plot(bb.nc, type="geneoverlap",6 cex=.75)

Gene Overlap (All 1000 Chromosomes)
5 4 3 21 NearCent-5-Classes-ALL-Data
| | | | |

0 200
I

-200
I

-400
I
|
[

Chromosome Prescence

-600
I
|

|
|

[H H#\I

\H’Ilhllfl . | \

[

IIJI' |III‘|} Il

-800

I
I1]‘
Ill I‘\
| |

|

|
I

I

-1000

1 5 10 15 20

N
o
w
S
w
o
N
S
S
o

50

Ranked Genes

Figure 32 Overlapped Genes in Models.

5.2.2 Gene Interaction-Network

Figure 33 shows the dependency of top-ranked genes with each other. The
line thickness represents the dependency strength relative to the population
of relations shown. By default, only the two most important dependencies per
gene are shown.

> plot(bb.nc, type="genenetwork")

57

Victor Trevino and Francesco Falciani GALGO

Gene 'Interactions’ in Models (All 1000 Chromosomes)
NearCent-5-Classes-ALL-Data

1.0

05
I

scalling 2

-1.0

scalling 1

Figure 33 Gene Interactions within models.

5.3 Analysis of Model Accuracies

5.3.1 Confusion Matrix

For each class and each sample, shows the average percentage of the times
that sample or class has been predicted as any class. By default, the error is
computed in the test set for all splits (often, the number of splits is the number
of samples); hence, by default, a sample is approximately predicted P number
of times, where P = # chromosomes * number of splits * testfactor, and test
factor is, by default in configBB.VarSel, 1/3. For basic details see section 2.4.2.

plot(bb.nc, type="confusion")

cpm <- classPredictionMatrix (bb.nc)

cpm

cm <- confusionMatrix(bb.nc, cpm)

cm

sensitivityClass (bb.nc, cm)

specificityClass (bb.nc, cm)

length (bb.nc$bestChromosomes) # number of chromosomes
(see plot titles)

> length(bb.nc$data$splitTrain) # number of splits
#~150

> len.test <- length(bb.nc$data$splitTest[[1]])

> len.train <- length(bb.nc$data$splitTrain[[1]])
> len.test/(len.test+len.train) # test-factor
#~0.33 ~ 1/3

VVVVVVVYV

58

Victor Trevino and Francesco Falciani GALGO

Class Confusion (1000 Models)
NearCent-5-Classes-ALL-Data

(NA)
0 0 0 0 8
0943
TEL
0002 0.037 0.014 £-494
i | 004 MWM@MWWM
0004 K . 04, ., e .
: 0015 $o4 0.005.
MLL 8 I
% L] 0.029 e 0.01.
4YP+50 8 I
2 0.032 0009 ST | X 7 2T
a
EMLLA - I
0024, 19:066 0009 e 0009 e . .
EMLLA HYP+50 MLL T TEL
27127 64/64 20/20 43/43 79179
Samples Samples Samples Samples Samples
Sensit _| 0.965 0.881 0.848 0.949 0.943
Specif 0.973 0.98 0.974 0.984 0.986

Original Class *sorted’
TTTTTTTTTTTTTTTTTTTTTTTTTTIoTT TTTTTTTTTTITITT TITTTTITITIT

H—

Figure 34 Confusion Matrix. All samples sorted by known class in horizontal. Vertical
shows the fraction of times any given sample has been predicted as any other class.

To assess the error in training or test sets and in different splits, we can use
the following code.

> plot(bb.nc, type="confusion", set=c(1,0), splits=1:10)

The code above will evaluate all chromosomes only in training using the first
10 splits. set parameter is used as a weights for training and test accuracies
respectively (w#, we) in a relation as following:

accuracy = wy * Training Accuracy + we * Test Accuracy

In this way we can setup a error estimation as proposed by Efron (Efron et al.
1993) (see BOX 1, section 3.3 and classification.test.error parameter in
configBB.VarSel). set and splits are really parameters passed to
classPredictionMatrix method used in to draw the plot. classPredictionMatrix
does not wuse these parameters, instead, they are passed to
bb.nc$data$classFunc, which was set by configBB.VarSel to classPrediction
method (see section 3.5 and type ?classPrediction). It is just there where set
and splits have a real meaning. Therefore, these parameters can be used also
in the classPredictionMatrix method.

> classPredictionMatrix(bb.nc, set=c(1,0), splits=1:10)

59

Victor Trevino and Francesco Falciani

GALGO

A more compressed format is shown in Figure 35, which highlights the
distributions of the averages of class prediction for each class. This plot was
produced using the following code.

> plot(bb.nc,

type="confusionbox")

Class Confusion (1000 Models)

NearCent-5-Classes-ALL-Data

109 — i - L =
i 'é' T
z 08 ! . °
C ~ 1
3 o | o
3 06 ° 4 ° o
Lt A
2 e
S 04
4
[}
& 02 .
(6] o ©
s
o
2 00 5
kS EMLLA HYP+50 MLL T TEL
@ 27127 64164 2020 43/43 7979
. Sarggles Samgles Samples Samples Samples
Sensit _| 0.965 0.881 0.848 0.949 0.943
Specif 0973 0.98 0.974 0.984 0.986
T T T T T T T T T I I I T T T T T T T T
382" Eg£38d"pg3gI"Eg3¢82"pg3gLE ¢
= = E = = = g =
I I I I I
Figure 35 Confusion matrix by class prediction distribution.
A third format can be produced using the following code.
> plot(bb.nc, type="confusionpamr")
Class Confusion (1000 Models)
NearCent-5-Classes-ALL-Data
...o .'.-..m .'o: o..:. o:&, ’.0.-0 ./:'n‘:. . ‘“".'s- ...“.o.vm ’.‘vo
iaau&:. — M.mu»-.‘.{ oSkt ;c. . 2&-&-‘..#», h wl;.. b .«az “?,..:::,M,MM .
I S N
EMLLA HYP+50 MLL T TEL
27127 64/64 20/20 43/43 7979
Samples Samples Samples Samples Samples
Sensit _| 0.965 0.881 0.848 0.949 0.943
Specif 0.973 0.98 0.974 0.984 0.986]

Figure 36 Confusion Matrix in a single row.

Finally, as was seen in section 2.4.2, the accuracy for a specific chromosome
can be assessed as follows.

60

Victor Trevino and Francesco Falciani GALGO

> plot(bb.nc, type="confusion",
chromosomes=1ist (bb.nc$bestChromosomes[[1]]))

5.3.2 Chromosome Accuracies

> plot(bb.nc, type="splitsfitness", xlab="Split (TEST-
SETS) ")

> fs <- fitnessSplits(bb.nc)

> dim(£fs) #~ 303 x 150

> fs

> plot(bb.nc, type="splitsfitness", set=c(1,0),
xlab="Split (TRAINING-SETS)")

Figure 37 shows the distribution of the fitness across all splits. By default, the
titness is computed in all test sets. Again, as in the sections above, using set
parameter, which effects this time to fitnessSplits, we could assess the error in
training. To evaluate only a set of chromosomes, we can use the filter or the
subset parameter or use directly the chromosomes parameter.

Fitness (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

Chromosomes Fitness
075 080 0.85 080 085 1.00

° ° o °
UL R R RN RN RN RN R RN RN N RN RN RN RN RN RN R NN RN R RN N NN RN RN RN RN RN RN NN RN RN R RN NN RN RN RN R RN RN RN RN RN RRRRRRRAR RN
147 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 107 113 119 125 131 137 143 149

Split (TEST-SETS)

Fitness (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

085
1

o

0.80
1

Chromosomes Fitness
0.80
1 L

0.75
1

o
UL R R RN RN RN RN R RN RN N RN RN RN RN RN RN R NN RN R RN N NN RN RN RN RN RN RN NN RN RN R RN NN RN RN RN R RN RN RN RN RN RRRRRRRAR RN
147 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 107 113 119 125 131 137 143 149

Split (TRAINING-SETS)

Figure 37 Chromosomes Fitness Distribution Across Splits. Top: in test sets. Bottom: in
training sets.

Note the first box in the bottom plot in Figure 37 that shows the error in
training set used by the GA. By definition, it must be “higher” than 0.9 due to
restriction in the fitness goal specified. Nevertheless, “outliers” dots below 0.9
in first box may appear showing those chromosomes that did not reach the
fitness goal after the maximum number of generations.

61

Victor Trevino and Francesco Falciani GALGO

Finally, using the following code, we can obtain the overall accuracy shown in

Figure 38.
> plot(bb.nc, type="fitnesssplits")

Fitness (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

o —_—
~

Frequency
30 50
Lo

10

0

I T T T 1
0.84 0.86 0.88 0.90 0.92

Mean Fitness in splits

Figure 38 Overall Accuracy.

5.3.3 Gene Accuracies
To show the fitness of chromosomes for top-ranked genes, we can use the

following code.

> plot (bb.nc, type="rankfitness")

Figure 39 shows the result. For example, for the first top-genes, each boxplot
shows the fitness distribution of all models containing the corresponding
gene in horizontal axis. Therefore, this plot might reveal relations between

gene and fitness.

Fitness For Models of Top Ranked Genes (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

092 - - .
: T -
LT Loz
‘ ‘
0.90 Lo P T,
T S
‘ Po
= : :
.
8088 g B
= n 1 - -+
i : TEE e
[el [
0.86 - 1 i
: ‘
i i
0.84 - o
T T 1T T 1T 1T T 1T T 1T 171
ﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁl“ilﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁl‘ﬁlﬁlﬁlﬁlﬁlﬁl“ilﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁl‘ﬁl
l\t‘)NoDOmwcbonu)c')oohl\m(ovmwmvocﬁommmc')NooNo)lnmOvOmNm"—lothtchIn‘—\—O
(‘)In\—va\lDNInO)c')vNO:rlnoo(Dr\l\(oN(')(D(Oomovvl\v\(')VI\G)NH’)H’)(‘),\IO(DCDMOK)ODOD(D
b S22 OWOmWOOW”MEFEON«~—O© O «— © (")wr\m(DIO\—N(»G)Ovm_V’\w‘_‘_(\‘m'\wmmww(’)(ﬂvw

Figure 39 Fitness of chromosomes for top-ranked genes.

62

Victor Trevino and Francesco Falciani GALGO

5.4 Model Refinement

As shown in section 2.4.4, one possible problem is that genes inside
chromosome are not really needed. Therefore, sometimes it is advisable to
remove these unnecessary genes. To assess the genes that are important in
each model, we have implemented a classical backward selection strategy
removing one gene at the time recursively (type ?geneBackwardElimination
and ?robustGeneBackwardElimination). One can use this approach just after
the GA threw the solution wusing the callBackFuncBB parameter in
configBB.VarSel, then saving automatically the shrunken chromosome. To do
this, use something like the following code.

> bb <- configBB.VarSel(...,
callEnhancerFunc=function(chr, parentBB) ({
robustGeneBackwardElimination (chr, parentBB,
result="shortest")

})

Note, however, that backward elimination strategy is somehow inefficient
when the starting chromosome size is large (10 or more).

To show the “optimal” gene size evaluated in the original split (assuming that
no enhancement function has been provided), do the following.

> tchr <- lapply (bb.nc$bestChromosomes,
robustGeneBackwardElimination, bb.nc, result="shortest",
set=c(0,1), splits=1)

> barplot(table (unlist (lapply (tchr,length))) ,main="Length
of Shrunken Chromosomes\nEvaluated in Training Set in the
original split")

Length of Shrunken Chromosomes
Evaluated in Training Set in the original split

20 40 60 80 100 120
1

0
L

Figure 40 Shrunken chromosomes

Figure 40 shows that not all genes were necessary in more than a half of
chromosomes evaluating in the training sets in only one split. We did the last

63

Victor Trevino and Francesco Falciani GALGO

computation for illustrative purposes. It would be better to assess the optimal
chromosome size using the test error in all splits tough.

In general, this mechanism can be used to design a second level “search” or
assessment of the evolved chromosomes.

5.5 Assessing GA and CPU Performance

The GA search (step 2) is, by far, the most time consuming part of the process.
Many parameters affect the search (see Goldberg (Goldberg 1989)), but in the
end this is reflected by the evolution of fitness value. The evolution of the
titness can be shown using the following code.

> plot(bb.nc, type="fitness")

Fitness (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

Fitness

40 — Mean (al)
Mean (unfinish)
T T T T |

0 50 100 150 200

Generation

Figure 41 Evolution of the maximum fitness across generations in searches. The generation
in which the average fitness reach the goal fitness (in red) is indicated (40). Mean fitness is
the fitness considering all searches and represent the expected frequency by generation.
“Unfinish” fitness average is the fitness of all searches that has not ended by a given
generation, it intend to show the average worst case expectation.

Figure 41 shows the fitness evolution across generations, which indicate that
the goal fitness is reach, in average, in 40 generations. This plot can help in
evaluating and comparing different search configurations. We can not see in
this figure, however, what is the evolution of the attainable fitness because
many searches finish after reaching the goal fitness 0.9. One way to see the
maximum attainable fitness under certain configuration is setting and
“unreachable” fitness (see section 8.3).

64

Victor Trevino and Francesco Falciani GALGO

A similar plot, which is used in the default monitoring system, can be shown
using the following code (Figure 42).

> plot(bb.nc, type="generation")

To assess the time spent, we can use the “timing” variable stored in the
BigBang object, as follows.

> plot (bb.nc$timing)
> plot(bb.nc$timing,bb.nc$generation)

Last Generation (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

Frequency
60 80 100
1 1 |

20 40

0
1

T T T T 1
0 50 100 150 200

Generation

Figure 42 Distribution of the last generation.

L.Bioinformatics.Paper]:nearcent-mean-0,1L.Bioinformatics.Paper]:nearcent-mean-0,1

g] o § —]
o ° e
<
o
o _| o g n -
2 7 e e el F T 2"
£ o] °
= o C
4 - o°° S o > ‘8 - @80
C 0.0 © o @ ° 5 o gg
e 00 %o o © o o © c
o °o°o°@° of oo oo%o° ®o°0 o 2 5
— < —
-~ §oc° 6(;%%@%0% %6%86&0% CEN re}
- 2 [+
T | I T T I I I T T I
0 50 100 150 200 250 300 10 20 30 40
Index bb.nc$timing

Figure 43 Performance of the search. Left: seconds spend by each search. Right: seconds per
generation, which is given by the slope.

5.6 Chromosome Visualization

There are 6 common plots to visualize the models. In this section, we will
describe briefly each visual representation along with code examples.

65

Victor Trevino and Francesco Falciani GALGO

5.6.1 Heatmaps

Heatmap is the one of most common visual representation of gene expression
in across samples. The method heatmapModels (?heatmapModels.BigBang)
uses the common R heatmap function inheriting its parameters (?heatmap). In
a heatmap, the expression values are commonly normalized (scale parameter)
and converted to colour scales. In general, better visualization is obtained
when a hierarchical clustering is performed in both, genes in rows, and
samples in columns. However, because the unsupervised hierarchical
clustering methods may cluster samples differently than the classification
method of our choice, it could, instead, mislead the user (ColV and RowV
parameters). Gene names, sample names, colours, ordering scheme
(hierarchical clustering), and scaling can be controlled by parameters. For an
example, use the following code (Figure 44).

> heatmapModels (bb.nc,bb.nc$bestChromosomes[[12]])
> heatmapModels (bb.nc,bb.nc$bestChromosomes[[12]]) ,col=-
5, Colv=NA, Rowv=NA)

[ALL Bioi ics:Paperi:near ;1-kfolds

= value +

matics.Paper]; -0,1-kfolds

LT T 1 e — | e — [

S T
- L i
. -
| i

Figure 44 Heatmap representations of a model. Genes in vertical, samples in horizontal.
Both may or may not have an ordering scheme (e.g. clustering). Profile colour can be
customized easily. Sample colour (top) is class dependent. Gene colours (left “greyed”
bars) indicate index in the original chromosome.

3216t

1:100!

51471

4:1730

5.6.2 Principal Component Space

Another useful representation is the principal component space (PCA). In
PCA each component is a linear combination of the original gene values, in a
way that each component is uncorrelated each other (?pcaModels.BigBang
and ?prcomp). The final components are sorted by the amount the original
variance that each component explains from the original data variation.
Therefore, PCA is seen in statistics as a data dimension reduction technique.

66

Victor Trevino and Francesco Falciani GALGO

When similar samples share similar gene profiles, in the PCA space they may
have similar components. Thus, if gene profiles have been already selected for
its ability to classify samples it would be likely that samples of same class
would appear closer each other in a PCA plot. For plotting the PCA use the
following code (Figure 45).

> pcaModels (bb.nc,bb.nc$bestChromosomes|[[1]])

[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
Model:(1943,965,2123,969,2371)

2 4 0 1 2 3 2 4 0 1 2
S S WA WA ST SR

 EMLLA (27)
B HYP+50 (64)
B MLL (20)

u ()
o TEL(79)

4240 1 2

©27%)

HYP+50 (64)

—pC3

1937979 0
R (82.1%
J| ™ EnLA 27)

= ENLLA (27)
B HYP+50 (64)
« . . 8 WL (20)
¥ . LN . . = T(43)
O TEL (79)

T T T T T
3240 1 2 2 4 0 1 2 3

Figure 45 Principal Component Space of profiles of a model. In first row, the first principal
component is plotted vertically and the other components horizontally. Similarly, in the
first column, the first principal component is drawn in horizontal. The percentage of the
variance explained by each component and the accumulated variance is shown. Colours
indicate class.

5.6.3 Raw Values

Sometimes we would like to see a representation of the original values
without any transformation at all. Figure 47 and Figure 46 shows the output
of the code below. Note that samples are sorted by class but the relative
position is arbitrary.

> plot(bb.nc, bb.nc$bestChromosomes[[1]],
type="genevalues")

67

Victor Trevino and Francesco Falciani

Gene Values [ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

GALGO

o~ N EMLLA B HYP+50 ® MLL - @& T O TEL . e
s &
Y . .~ ¢
2% e :Yo . ot . .
-4 Fasy . e T L% Gia
POV e o ot R K,
o. A . ..o . 2 ...’.. . . Y P ‘...o '3\',"
® I Noorn o HEEE R X g . .
=1 o — 3 O - '....o.:. . *) o . 8
© - . .'. b :° A e, 2 .:.;::.M‘o‘o; P o I I
> * o o, ‘e o 3 . LIRATY
e tef RO £l L e @ 4
~ _ . Ve 20" e T Pon, A . . ‘e
] L [POR S X3 & s
2 * - 0 W
: et .3 . . o o, e
. < o T - “! . e . MY
(o .". . 0‘ ¢ “le
) . - Q.o Y
¢ .
T T T T T
- - R e e
8 o = o 8 o S 2 ol
88 8 e 58 3 8
© T [Ts}
P! Gené &Tlass a 3
o] © ®

Figure 46 Raw Values of a model per gene. Raw value in vertical. Gene in horizontal (false

relative sample position).

5.6.4 Distribution of Raw Values

Another way to represent the raw values is comparing the distribution of raw

values.

> plot(bb.nc, bb.nc$bestChromosomes[[1]],
type="genevaluesbox")

Value

-1

-2

Gene Values [ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

B EMLLA B HYP+50 B MLL T O TEL
H - = -
ol = > 17
—é— H 2 i
8 . i

Figure 47 Distribution of raw values per class across genes.

5.6.5 Gene Profiles per Class

> plot(bb.nc, bb.nc$bestChromosomes[[1]],

type="geneprofiles")

H | |
1 1
1 1
. o i i b o . — -‘3’
| : 4 : ! - =+ <o] [+
o L 1 < 1 -+ © [S
1 . ! 1
I < : < 1
H 1
- L + .
8
I T T I
s - s s -
0 © — © © © © © o ©
©O ~ 1 (S g | © |
DD O ~— o N » O
g N5 & "3 2
S Gene & CHfiss & 3
© © ©

68

Victor Trevino and Francesco Falciani GALGO

Gene Profiles [ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

H EMLLA B HYP+50 B MLL BT O TEL
1.8]
|h" \/ \ ”HU ,,,x
”V\WWU ‘w ~|| 1 \) \\ "fl‘“'MWLUW 'Ulﬂ'\ - 370_at: 2371
24
1.9
LVAW W W H'|/J| v .u W v {\/WAA'W - 36536_at: 969
.‘
Y 21 ‘
© - 1488_at: 2123
> /MMW }‘ Ml,. ",’I,H'Jﬂl.u www i
-1.6l
19 wr .J wq '““ 'II'LI' 'I\ |\ MN
W\/ U \ L 36493 at: 965
25 .
T4 il lr Avig ¥ W ‘, fe
32542 _at: 1943
W W e -
2.7
T T T
0 50 100 150 200

Sample & Class

Figure 48 Gene Profile per Class.

5.6.6 Sample Profiles per Class

> plot(bb.nc, bb.nc$bestChromosomes[[1]],
type="sampleprofiles")

Sample Profiles
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
Gepe

MLL -

Value & Class

AYP+50 |

EMLLA - =

965:36493_at —
2371:370_at —
2123:1488_at —
1943:32542_at —
969:36536_at —

Figure 49 Sample Profiles. Sample expressions are scaled to range 0 to 1.

5.7 Predicting Class Membership of Unknown Samples

One of the goals of the analysis is the prediction of unknown samples, or
samples that were, in purpose, left out of the analysis. For this, we can use the
parameters force.train and force.test of configBB.VarSel prior the analysis. Other
strategy could be just adding the new data subsequent to the analysis. In this

69

Victor Trevino and Francesco Falciani GALGO

case we could use the predict method. As an illustrative example, we will use
the first 10 original samples as “new unknown” samples in the following
code.

> new.cm <- predict(bb.nc, t(bb.nc$data$data[l:10,]),
newClass="NEW", permanent=TRUE)

> new.cm

> plot(bb.nc,

type="confusionbox")

predict method adds the new data temporary to the data wvariable
(bb.nc$data$data), assigns new classes, and executes classPredictionMatrix. If
permanent is true, the data will remain there after predict finish. As expected,
the 10 new samples added are predicted as EMLLA (Figure 50).

Class Confusion (303 Models)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

1.0 - - -
= I H - ﬁ B
> | . ;
g 08 i ! b4
g _:_ i]
o -3
@ - 1
b 06 i ° °
o H
; © 4
> 04 7 °
14 6 ¥
-"5 o
© 02
= o g
° o I
§ 00 =8_ i—!i—-i—-
B EMLLA HYP+50 MLL NEW T TEL
a 27127 64164 20120 1010 43/43 7979
. Samples Samglées Samglfs Samples Samgles Samples
Sensit _| 0917 08 0.7 0 0.833 0919
Specif 0.792 0.958 0.959 1 0983 0976
T T T 1 T T T T T T T 1 T T T 1 T T T 1 T T T T T
383E P38 PEI54E " P23 #2355 FE3%48 8
= ';L = g = g = & z = & z = & b4
W W W W W W

Figure 50 Prediction of “NEW” samples as EMLLA (label “NEW”).

70

Victor Trevino and Francesco Falciani GALGO

6 Step 4 - Developing Representative Models

The result of the evolutionary process is a large list of chromosomes, and we
have assumed that the frequency of the genes in these solutions is linked to
their importance regarding the classification problem. We need then, a
method to create a model that select from this list of most important genes,
the ones that maximize classification accuracy. A simple method is following
the classical forward selection method, adding one gene at the time starting
from the most frequent to the least frequent. To obtain the best models using
this method, use the following code.

> fsm <- forwardSelectionModels (bb.nc)
> fsm$models

Models Using Forward Selection

[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

-

B N
(=} 3
~ 71..1210.9883 it Q%ﬁ'eiiiiﬁﬁi “iﬁﬁﬁiiiiiﬁixiiﬁﬁ
2 S e T e S S S E BRE BREEE S S
4 - oot 200000001 ottt A A AL ABAAAA
3
»
o [
8] .~
S =
0
& o ([
o o 7|12
= 3l /7
i P ; /
© 5 4 ,
|1
- | e
s o g ; —8— overall (233)
=
Z o —-o-- EMLLA(27)
o 211 ! =-Z=- HYP+50 (64)
o8 ~-- MLL (20)
i
24 | e T3
25] | (43)
o |28 ¢ TEL (79)
c 24 |
28] x average (5)
29
L S e B I
OO~ MO TNOOINOFROOLOINO-—~NOOOVO—OMNMUDIDVDOITITNOFROOO—TANITITNOD OO
WMOONTOOANDLMUDOOOOQOONOVMOONIOVDOONOULAIOFRNONDOITANTCTTOUNIT—OOONONOD
ONOD—TONMOTUOTOM~ROMRODOODODONOVOTVIDNOT AN TUNTANDTOOOOOITUNOOOO — I T T W
N rONTANN v .. NNT - N e NN T T T e e T e e
N TN T T T T o s TN TN T T T TN T T T L st
e O s s s as O 0 ss s s O 0O s ssas O i s s 4 L N N s ssss3s O OO OO o otsots s s s
lm||||Ic>oo|||||~—m<o|||[v|||||m|||||||o[||[m"-g_)v<r||||||
("’)v‘—‘VVl\-lf)LO(DCD(")VN\—‘(OLD(D(OI\-’\(I)N(")LO(DONDVVI\I\(')VI\O’NIOU')W.\(le)m("')(o(")mm(o

Figure 51 Representative Model by Forward Selection using the most frequent genes. Solid
line represents the overall accuracy (misclassified samples divided by the total number of
samples). Coloured dashed lines represent the accuracy per class. Average represents the
average class accuracy (the sum of averages per class divided by the number of classes). 29
models resulted from the selection whose fitness value is 0.99 times the maximum. The
best model is 12, which is formed from the 1st gene up to the 33rd gene.

> length (fm$models[[12]])
~33

Confusion Matrix for the designed model:
> confusionMatrix (bb.nc, chromosomes=fm$models[[12]])

Confusion Matrix for the top-10 genes:

71

Victor Trevino and Francesco Falciani GALGO

> confusionMatrix (bb.nc,
chromosomes=fm$models[[12]][1:10]) # first ten genes

Confusion Matrix for the first evolved chromosome, evaluated in the first
training set (first split):

> confusionMatrix (bb.nc,
chromosomes=bb.nc$bestChromosomes[[1]],
split=1)

set=c(1,0),

6.1 Plotting Representative Models

> plot(bb.nc, chromosomes=list (fm$models[[12]]),
type="confusion")

Class Confusion (1 Models)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

(NA)
0 0 0

TEL
0 Q 0

T_ I
0 Q (1

0
¢
(AR :
0
0

” 1
wi | |
o 0 [0.04 0
b 0.96
HYP+50 - I
o
o 0 0
o
EMLLA I| | || || ||
0
I ——
EMLLA HYP+50 MLL T TEL
27127 64/64 20/20 43/43 7979
Samples Samples Samples Samples Samples
Sensit _| 1 0.96 1 1 1
Specif 1 1 0.99 1 1
Original Class (sorted

UL

> heatmapModels (bb.nc,

subset=12)

fm,

72

Victor Trevino and Francesco Falciani GALGO

[LL.Bioinfi i ent-mean-0,1-kfolds

= value +

: 1601 : 36937_s_at
1193 : 39389 _at
: 1195 : 39402_at
: 1367 : 322207 at
;208 : 34583 at
: 2231 : 1085_at

: 1478 : 24782_at
1911 : 41490_at
: 1583 : 36820_at
: 1153 : 39003_at
: 985: 38493 at
: 1139 : 38968 at
: 1029 : 37280_at
12184 : 1325_at

: 2387 : 307_at

: 969: 36538 _at
: 562 :38604_at
1 1935 : 41814_at
12283 : 755_at

: 708 : 41097_at
© 42236239 _at
12396 : 266_s_at
: 1588 : 36638 _at
: 1989 : 33162_at
: 880 : 40729 _s_at
: 1736 : 38408_at
: 1530 : 35769 _at
: 1289 : 40468 _at
: 558 : 38578 _at
12123 : 1488 _at

: 1852 : 37243 at

: 2287 : 753_at

> pcaModels (bb.nc, fm, subset=12)

[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
56,1139,1652,1736,1367,708,965,969,1935,2396,2287,1601,562,1029,1193,15!

4 2 0 2 4 4 2 0 2
! L
PC1 L~
e oo
31.19213 ‘ '2’ o
(31.2% et e
B EMLLA (27) o ., *,;.‘}- -
B HYP+50 (64) I R -
B MLL (20) s 3.8
m T(43) Ve Le
O TEL (79) .)

- EMLLA (27)
B HYP+50 (64)
B WLL (20)

B T(43)

o TEL (79)

1464223
©36%) . °
EMLLA (27; IR SRR A
HYP«so(%sz) DRl . o
MLL (20) R
T(43) P I
TEL (79) R
: PC4|
7.14954
(70.8%
m EMLLA (27)
B HYP+50 (64)
B ML (20)
u T(43)
. O TEL (79)

> plot(bb.nc,fm$models[[12]], type="genevalues")

73

GALGO

Victor Trevino and Francesco Falciani

Gene Values [ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

-
w
=
o

*Vo;k.!» -
=

o s SN ¢
= -*»ets
- a2
2| w700
m | W
(=] ..
8 | WL
e gk 4 2 AN
T | R
=]
3
=
o #mess
il

: Q89
| e 89voy

- eoz
| ¥ €£oo6e

> plot(bb.nc,fm$models[[12]], type="genevaluesbox")

nearcent-mean-0,1-kfolds

Gene Values [ALL.Bioinformatics.Paper]

O TEL

|T

| W EMLLA B HYP+50 @ MLL

o

-kfolds

1

Gene Profiles [ALL.Bioinformatics.Paper]:nearcent-mean-0,

2123

- 1065_at: 2231

I 36638_at: 1588

- 753_at: 2287

I- 34782 at: 1478
- 40468 at: 1269
I- 30402 at: 1195
I 39003 at: 1153
I- 40729 s _at: 680
I 36620 at: 1583
- 30389 at: 1193
I- 37280 at: 1029
I 38604_at: 562
I 36937 s_at: 1601
b 41874_at 1935
I 36536_at: 969
I 36493 at: 965
I 41097 at: 708
b 32207 at: 1367
I 38408_at: 1736
I 37343 at: 1652
I 38968_at: 1139
I 38578_at 556
b 36239_at: 422
I 578_at- 2334

I 34583 at 208
b 307_at: 2387

I 266_s_at: 2396

- 755_at: 2283

I~ 33162_at: 1969

I 41490_at: 1911

- 1488

- 1325_at: 2164
- 35769_at: 1530

gl oL
B g
$
[
S
n| U
5
3| ¢
5|
w7
gl |
3|
3
| |
3
z
]

Sample & Class

> plot(bb.nc,fm$models[[12]], type="sampleprofiles")

74

Victor Trevino and Francesco Falciani GALGO

Sample Profiles

[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
Gene

MLL |

4YP+50 |

EMLLA —

) —
T

2396:266_s_at —|
2164:1325_at —|
1530:35769_at —|
2123:1488_at —

1935:41814_at —

1601:36937_s_at —

708:41097_at —

2231:1065_at

1583:36620_at —
1153:39003_at —
208:34583_at —
1367:32207_at —
1195:39402_at —
1193:39389_at —
1969:33162_at —
1586:36638_at —
422:36239_at
1029:37280_at —
2283:755_at —
562:38604_at
2387:307_at —
969:36536_at —
1269:40468_at —
680:40729_s_at —
1736:38408_at —
1652:37343_at —
556:38576_at —
2334:578_at —
2287:753_at —

T
]
o
8
2
=
>

1478:34782_at —
1139:38968_at
965:36493_at

6.2 Predicting Unknown Samples

Value & Class

As in section 5.7, for an illustrative example for prediction, we will use the
first 10 original samples as “new unknown” samples in the following code

(see the column “NEW” in Figure 52).

> new.cm <- predict(bb.nc, t(bb.nc$data$data[l:10,]),
newClass="NEW", permanent=TRUE, func=NULL)

> plot(bb.nc, chromosomes=list (fm$models[[12]]),
type="confusion")

Class Confusion (1 Models)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds

(NA)
Q 0 0 0 0 Q
TEL l | | | |
0 0 0 0 9
T
0 Q 0 0 0
NEW .
© Q 0 Q 0 0 0
4] l ”
MLL
E l 0 | 0.04 l | 0 Q
5
4YP+50 -| & I
o 0 0
EMLLA - .
0 0 0 0
— —1
EMLLA HYP+50 MLL NEW T TEL
27127 64/64 20/20 1010 43/43 7979
Samples Samples S I p Samples
Sensit _| 1 0.96 1 0 1 1
Specif 0.8 1 0.992 1 1 1

Original Class (sorted) _
UL 0 AR RO A T T I I

75

Victor Trevino and Francesco Falciani GALGO

7 Additional Options

7.1 Regression and Survival Analysis

A benefit of GALGO is that it can be easily expanded to solve other kind of
problems. For instance, the implementation of a fitness function for a
regression problem could be done as following.

reg.fitness <- function(chr, parent, tr,te,res) {
try <- parent$data$dependent[tr]
trd <-

data.frame (parent$data$data[tr,as.numeric(chr)])
colnames (trd) <- c("gl","g2","g3")
trm <- lm(try ~ gl+g2+g3+gl:g2+gl:g3+g2:g3, data=trd)
tey <- parent$data$dependent|[te]
ted <-

data.frame (parent$data$data[te,as.numeric(chr)])
colnames (ted) <- c("gl","g2","g3")
cor (predict (trm,newdata=ted) , tey) *2

}

#H###

This code try to regress the values

of a random selected gene.

#H###

"userFile.txt" contains ALL and ALL.classes,

otherwise we can use data=ALL and strata=ALL.classes
reg.bb <- configBB.VarSelMisc (file="userFile.txt",
chromosomeSize=3, niches=1, maxSolutions=1000,
goalFitness = 0.5, saveVariable="reg.bb",
saveFrequency=50, saveFile="reg.bb.Rdata",
fitnessFunc=reg.fitness)

#Now, choose the gene

regl <- sample(l:ncol (reg.bb$data$data), 1)

#Set the values of the dependent variable,
#essential to reg.fitness

reg.bb$data$dependent <- reg.bb$data$datal,regI]
#set to zero to avoid selection of that gene
reg.bb$data$data[,regI] <- O

blast(reg.bb)

In the same manner, survival analysis can be implemented providing only the
titness function. Note that the example shown here considers always three
genes, if a forward selection is used, even that the chromosome contains more

76

Victor Trevino and Francesco Falciani GALGO

than three genes, only the first three genes would be used. The user has to
generalize the function considering all the genes present in the chromosome.

7.2 Parallelization

In this first release, we have implemented a semi-automatic and very
simplistic form of parallelization benefiting from the file saving scheme. The
core idea is depicted in Figure 53, where autonomous processes save their
results progressively in independent files that can be merged by the analysis
process.

Parallel Process 1 Process 2 Process N
Processes o
C
e ® OO0
nalysis Analysis
Processes

Figure 53 Parallelization of GALGO processes. Many parallel process running
independently (on different PCs or CPUs) and save their results in separate files on a
common storage device (e.g. Hard Disk). These files are then merged in a BigBang Object
and the analysis is performed as described in this tutorial.

The following code can be used to parallelize a given task.

#Initial process:

#load data and configure initial objects run once
library (galgo)

bb <- configBB.varSel(..., saveFile="bb.parallel.Rdata",
c.)

saveObject (bb)

#

#Parallel process:

#run as many process you want
library (galgo)

loadObject ("bb.parallel.Rdata")
assignParallelFile (bb)

blast (bb)

#

77

Victor Trevino and Francesco Falciani GALGO

#Analysis Process:

library (galgo)

loadObject ("bb.parallel.Rdata")
loadParallelFiles (bb)

plot (bb) #further analysis..

#

In the above code, the “Initial process” section serves to create the master
object, which will be “copied” in all parallel process. The section “Parallel
process” is the code used in every parallel process, which assign a unique
consecutive file for the process in turn. The “blast” method save the results in
these files progressively. Finally, in the “Analysis Process” section, which
must be another independent process, the master object is loaded and the
results from the updated files are merged to perform the analysis.

7.3 Using weighted variables

It may be desirable to subset variables on the basis of a defined property and
explore preferentially certain subsets. This can be done in GALGO using a
weighting scheme that gives different weights to variables belonging to a
certain category. Technically, this can be performed specifying a new random
generation function for the Gene object as follows.

geneWeights <-
a vector representing the probability of each variable
to be included in a chromosome.

runif.weigths <- function(.0, n, mn, mx) {
sample (mn:mx, size=n, prob=geneWeights)

}
bb <- configBB.VarSel/Misc(..., geneFunc=runif.weights)

7.4 Using GALGO to solve a classical Optimization Problem

A classical example in genetic algorithms is a regression problem with binary
representation. It has several limitations but is shown here for illustrative
purposes. Let assume that we have a series of samples changing in time, and
that we want to compute the slope and intercept of a linear model. We will
approach this creating a binary chromosome of size 10 which would be
interpreted as an integer ranging from zero to 2"5-1 for both, the slope and
the intercept. Now, we need a stopping rule, a condition that assures that the
current approximation is good enough, or in the other hand, that the
evolution do not last forever.

78

Victor Trevino and Francesco Falciani GALGO

The first task is to solve the gene representation, which is binary, only 0 or 1
can be represented in a gene. Thus, we create the Gene.

ge <- Gene(0, 0, 1) # 0 - id, 0 - minimum, 1 - maximum
ge

The second task is to create a chromosome that group five genes of this type
and a decode function that converts the binary representation into real values.

decodeChr <- function(cr) {
chr <- as.numeric(cr)
c(a= sum(22(4:0) * chr[l:5]), b= sum(2~(4:0) *
chr[6:10]))
}
cr <- Chromosome (genes = newCollection(ge, 10),
decode=decodeChr)
cr

Now we use this chromosome prototype to create our population of
chromosomes that is necessary for the Galgo object.

ni <- Niche (chromosomes = newRandomCollection(cr, 10),
elitism=1)
ni

Before creating the galgo object, we need the fitness function. It should receive
the chromosome and a parent object, which may contain any data.

regFitnessFunc <- function(cr, parent) ({
chr <- decode(cr) # this really calls decodeChr
l-sum((chr["a"] + chr["b"] * parent$x -
parent$y) ~2) / (sum(parent$y*2) -
sum (parent$y) *2/length (parentsy))
}

Then, we create the Galgo object.

ga <- Galgo (populations = ni, fitnessFunc =
regFitnessFunc, goalFitness = 0.88, maxGenerations = 50,
callBackFunc=plot)

Now we need to create random data to run the test.

data <- list()
data$x <- 1:50
a <- runif(1,20,31)
b <- runif(1,4,16)

79

Victor Trevino and Francesco Falciani

data$y <- a + b * data$x + rnorm(50, m=0, sd=100)
Finally, we run the evolution and compare the best solution.

evolve (ga, parent=data)
a

b

decodeChr (best (ga))

GALGO

80

Victor Trevino and Francesco Falciani GALGO

8 Parameter Estimation and Considerations

8.1 Number of Solutions

In the analysis of the population of selected chromosomes, it is important to
rely on a sufficiently large number of chromosomes. The ability to observe in
real time the stability of the gene composition in the chromosome population
is an important tool to select an appropriate number of chromosomes. In
practice, for many applications, the number of solutions, required to stabilize
the top 20 most frequent genes is sufficient. From Figure 26, we can estimate
that between 1000 and 2000 solutions are needed to stabilize 20 genes for this
dataset. If more genes are strictly needed, a longer run would be required. For
example, Figure 54 shows that 8000 solutions would be needed to stabilize the
first 50 genes (look around -15000 in vertical axis). However, exact positions
within these 50 are eventually changing. A broader plot shown in Figure 55
reveals interesting results, the first ~300 genes (in black) has been relatively
stable along the run whereas the next ~300 genes (in red) has been
increasingly stabilizing.

Gene Rank Stability: nearcent-mean-0,1-kfolds
(All 23505 Chromosomes)

Rark + Frequency
-10000 -5000 0 5000
| | |

-15000
1

-20000
|

Genes

Figure 54 Gene Rank Stability for the first 50 genes in a long run (23505 solutions).

Another important issue related to the number of solutions is about
reproducibility. The frequency computed in two replicated experiments
should be approximately the same when the rank is not due to random
fluctuations. Therefore, a scatter plot of gene frequency from two replicated

81

Victor Trevino and Francesco Falciani GALGO

searches, and the number of overlapped genes would reveal stability between
runs. Figure 56 show that as more solutions as more stable the frequency, and
more top-overlapped genes between independent runs.

+ Gene Rank Stability: nearcent-mean-0,1-kfolds
(Al 23505 Chromosomes)

Rark + Frequency
-10000 -5000 0 5000

-15000

-20000

0 500 1000 1500 2000

G

Figure 55 Gene Rank Stability for all genes in a long run (23505 solutions).

100 Solutions 200 Solutions 500 Solutions

80

128 36 | 45

20
30

15
80

Replicate 2
Replicate 2
20
Replicate 2
o

3
10
20
3,

.

Lea4wo

aes:.. & °
S 1 T

c1 0087

T T T T T T T T T T T T T
2 4 6 8 10 12 14 15 20 25 o 20 40 60 80

Replicate 1 Repiicate 1 Replicate 1

Figure 56 Gene Frequency Comparisons. Comparisons were made in replicates at different
number of solutions. Number inset represent the number of overlapped genes in the top
50.

8.2 Number of Generations

Ooi et al. (Ooi et al. 2003) have used a 100 as the number of generations
whereas other researchers (Liu et al. 2005; Peng et al. 2003) have used instead,
a large number of generations (from 2,000 to 100,000). Nevertheless,
commonly the fitness grows exponentially until a plateau effect where the
tithess grows very slowly or stops its growth (Figure 9). Therefore, we
consider pointless to use thousands of generations. In such a case, we think it
would end up in overfitting. To investigate the maximum possible fitness and

82

Victor Trevino and Francesco Falciani GALGO

then decide the number of generations, we could execute a preliminary run
using an unreachable fitness in 20 or 50 cycles as shown in Figure 57 (see
section 8.3).

Fitness (All 22 Chromosomes)
[project]:nearcent-mean-0,1-kfolds

Fitness

— Mean (all)
Mean (unfinish)

T T T T T
0 50 100 150 200

06

Generation

Figure 57 Fitness evolutions in 20 solutions using an unreachable fitness.

8.3 Goal Fitness

The goal fitness should be the average reachable fitness in a reasonable
amount of generations (see previous section). Commonly, we choose the
average fitness resulted after 30, 50, or 100 generations, but it is problem
dependent. Perhaps the plot type “fitness” using between 20 and 50 solutions
would help in deciding the goal fitness to use (Figure 57). Therefore, a short
run with a very high goal fitness value (to see the plateau effect) can be useful
to make a decision in a goal fitness, which can be done using the following.

> data (ALL)

> data(ALL.classes)

> bb <- configBB.VarSel (data=ALL, classes=ALL.classes,
chromosomeSize=5, classification.method="nearcent",
maxSolutions=20, goalFitness = 1, maxGenerations=200,
maxBigBangs=20)

> blast (bb)

> mf <- meanFitness (bb)

> mf[c(25,50,75,100,200)]

You must consider that the final fitness based on model selection methods (as
those from forward selection method using top ranked genes) is commonly
higher that those from evolutionary process. We have seen in several datasets
that the fitness computed by forward selection method after pooling many
solutions, is between 5% and 15% higher that the attainable goal fitness used
for evolutionary solutions.

83

Victor Trevino and Francesco Falciani GALGO

8.4 Chromosome Size

The chromosome size has a great impact in the fitness and the performance.
The higher the chromosomes size the slower the computation. Moreover,
increasing the chromosome size not always generate average increase in
titness. Some researchers have used a high chromosome size (Li et al. 2001),
nevertheless, in our research, the increase in size lead in serious overfitting
problems, as shown in Figure 58. Certainly, the fitness is slightly higher for
longer chromosomes when evaluated in the split used in the selection of the
genetic algorithm. However, when the same chromosomes are evaluated in
all splits, the average fitness is drastically decreased. This means that for
longer chromosomes, the fitness is more dependent on the specific split used
in the search, hence overfitted.

Fitness 1 split Model Size = 5 Fitness 40 splits Model Size = 5

2500

6000
1500

Frequency

Frequency

Frequency

0 2000

6000

0 2000

6000

0 2000

0.4

Fitness 1 split Model Size = 10

0.4

Fitness 1 split Model Size = 20

Frequency

Frequency

Frequency

0 500

500 1000 1500

0

0 500 1000

Fitness 40 splits Model Size = 10

Fitness 40 splits Model Size = 20

0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 58 Fitness distribution using different model sizes (chromosome size). Left panels
correspond to fitness evaluated in one split only, the one used for the evolution in the
genetic algorithm. Right panels correspond to the fitness evaluated in all splits. Data
consist on 40 prostate cancer samples (Lapointe et al. 2004).

On the other hand, smaller chromosome sizes could not reach appropriate
goal fitness, or they may be not robust enough. For classification problems,
we have seen that, in general, the number of different classes gives a lower
limit for the number of genes in a chromosome. It makes sense because genes
tend to be unimodal among samples (but not unique to a class). Chromosome
sizes smaller than three may be meaningless because an exhaustive search
might be faster and global than those searches using any stochastic method.

84

Victor Trevino and Francesco Falciani GALGO

8.5 Population Size

Increasing the population size would explore more solutions-landscape per
generation, thus a reduction in the number of the generations is expected.
However, larger populations would require more process time. Hence, the
population size, the number of variables, and the number of generations are
linked. The default population size in configBB functions is 20 plus an
additional unit per each 400 variables, thus for 2,000 genes the population size
would be 25, and for 10,000 genes it would be 40. Increasing the number of
genes while keeping constant the population size would increase slightly the
number of generations required. However, for more than 10,000 variables it
may be worth to increase the population size manually. It is recommendable
filtering the data eliminating variables with very small variance to avoid large
processing times.

8.6 Elitism

In genetic algorithms, the new generation is randomly build based on the
value of the fitness for every chromosome in the current generation. Because
of the randomness of this process, the results are that the maximum fitness of
the current generation fluctuates. The elitism mechanism ensures the
conservation of the best chromosome in the next generation, which generally
improves the performance. However, because the best chromosome is always
present in the population, the system could be trapped in local peaks
(attractors). Therefore, the default behaviour using configBB functions is to use
elitism 95% of the time (in a cyclic fashion, nine generations with elitism
turned on and one generation with a probability of elitism to 0.5). If poor
fitness values are always obtained, the GA search could be early trapped in
poor large attractors, decreasing the elitism (even to 0) many of times would
solve the problem.

8.7 Number of Niches and Migration

A niche is a population that evolves by their own; it considers only the
chromosomes in the current population for building the next generation. The
default number of niches in configBB functions is one. The idea of isolating
chromosomes into niches is to exchange individuals hoping that combinations
may result in improvements. Without any exchange between niches, they
would evolve independently in parallel. In this case, it would be a loss of
processing time because the result of the evolution is only one chromosome,
the best ever visited. Therefore, if the number of niches is higher than one,
some kind of exchange must be established. The default behaviour is to
migrate the best chromosome to other niches 7.5% of the time (in a cyclic

85

Victor Trevino and Francesco Falciani GALGO

fashion, 18 generations with migrate off to set up good chromosomes, 1
generation with a probability of 0.5, and 1 generation with migration on).
Nevertheless, this behaviour is only visible when the number of niches has
been explicitly increased rather than using the default.

8.8 Mutations and Crossover

In genetic algorithms, generally the mutations and crossover are set up by
probabilities. A 0.01 probability of mutation would mutate in average 1 of 100
genes, or 1 mutation every 20 chromosomes of size 5. In the literature,
common values for mutation are even smaller. Nevertheless, those values are
effective for binary encoded chromosomes, where the number of “genes” for a
single parameter could be very large. Therefore, for variable selection in
microarray data we have to adjust this probability. In this package, we use
direct integer representations in configBB functions for convenience, and the
mutation probability is by far higher than in the binary-based genetic
algorithms. Hence, the default has been set to in average, one mutation per
chromosome (actually, the number of mutations in the populations is the
same than the number of chromosomes). For crossover, the default value
involves all chromosomes in the exchange. Alternatively, GALGO can
interpret mutation and crossover probabilities or mutation and crossover
absolute numbers (type ?Niche in R). We have used numbers instead, because
it is easier for us to think on mutations per chromosome or per population
than mutations per gene.

86

Victor Trevino and Francesco Falciani GALGO

REFERENCES

Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap. New
York, Chapman & Hall.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and
machine learning. Reading, Mass., Addison-Wesley Pub. Co.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and

artificial intelligence. Ann Arbor, University of Michigan Press.
Lapointe, J., Li, C., Higgins, J. P., van de Rijn, M., Bair, E., Montgomery, K.,
Ferrari, M., Egevad, L., Rayford, W., Bergerheim, U., Ekman, P.,
DeMarzo, A. M., Tibshirani, R., Botstein, D., Brown, P. O., Brooks,]J. D.
and Pollack, J. R. (2004). "Gene expression profiling identifies clinically

relevant subtypes of prostate cancer." Proceedings of the National
Academy of Sciences of the United States of America 101(3): 811-816.

Lattin, J. M., Carroll, J. D., Green, P. E. and Green, P. E. (2003). Analyzing
multivariate data. Pacific Grove, CA, Thomson Brooks/Cole.

Li, L. P.,, Weinberg, C. R., Darden, T. A. and Pedersen, L. G. (2001). "Gene
selection for sample classification based on gene expression data: study
of sensitivity to choice of parameters of the GA/KNN method."
Bioinformatics 17(12): 1131-1142.

Liu, J. J., Cutler, G, Li, W,, Pan, Z., Peng, S., Hoey, T., Chen, L. and Ling, X. B.
(2005). "Multiclass cancer classification and biomarker discovery using
GA-based algorithms." Bioinformatics 21(11): 2691-7.

Mcculloch, W. S. and Pitts, W. (1990). "A Logical Calculus of the Ideas
Immanent in Nervous Activity (Reprinted from Bulletin of
Mathematical Biophysics, Vol 5, Pg 115-133, 1943)." Bulletin of
Mathematical Biology 52(1-2): 99-115.

Moore, A. (2001). Statistical Data Mining Tutorials. Support Vector Machines.,
http://www-2.cs.cmu.edu/~awm/tutorials/. 2001.

Ooi, C. H. and Tan, P. (2003). "Genetic algorithms applied to multi-class
prediction for the analysis of gene expression data." Bioinformatics
19(1): 37-44.

Peng, S., Xu, Q., Ling, X., Peng, X., Du, W. and Chen, L. (2003). "Molecular
classification of cancer types from microarray data using the

combination of genetic algorithms and support vector machines." FEBS
Lett. 555(2): 358-62.

Sha, N. J., Vannucci, M., Tadesse, M. G., Brown, P. J., Dragoni, L., Davies, N.,
Roberts, T. R. C., Contestabile, A., Salmon, M., Buckley, C. and Falciani,
F. (2004). "Bayesian variable selection in multinomial probit models to
identify molecular signatures of disease stage." Biometrics 60(3): 812-
819.

87

Victor Trevino and Francesco Falciani GALGO

Smola, A.J. (2000). Advances in large margin classifiers. Cambridge, Mass.,
MIT Press.

Tabachnick, B. G. and Fidell, L. S. (2001). Using multivariate statistics. Boston,
MA, Allyn and Bacon.

Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). "Diagnosis of
multiple cancer types by shrunken centroids of gene expression." Proc
Natl Acad Sci U S A. Jan 20; 99(10): 6567-72.

Vaquerizas, J]. M., Conde, L., Yankilevich, P., Cabezon, A., Minguez, P., Diaz-
Uriarte, R., Al-Shahrour, F., Herrero, J. and Dopazo, J. (2005). "GEPAS,
an experiment-oriented pipeline for the analysis of microarray gene
expression data." Nucleic Acids Research 33: W616-W620.

Yeoh, E. J., Ross, M. E., Shurtleff, S. A., Williams, W. K., Patel, D., Mahfouz, R.,
Behm, F. G, Raimondi, S. C,, Relling, M. V., Patel, A., Cheng, C,,
Campana, D., Wilkins, D., Zhou, X. D,, Li, J. Y., Liu, H. Q., Pui, C. H,,
Evans, W. E., Naeve, C., Wong, L. S. and Downing, J. R. (2002).
"Classification, subtype discovery, and prediction of outcome in
pediatric acute lymphoblastic leukemia by gene expression profiling."
Cancer Cell 1(2): 133-143.

88

