gsw_pot_enthalpy_ice_freezing_first_derivatives_poly {gsw} | R Documentation |
First Derivatives of Potential Enthalpy (Polynomial version)
gsw_pot_enthalpy_ice_freezing_first_derivatives_poly(SA, p)
SA |
Absolute Salinity [ g/kg ] |
p |
sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar |
The present R function works with a wrapper to a C function contained within the GSW-C system (Version 3.05-4 dated 2017-08-07, available at https://github.com/TEOS-10/GSW-C, as git commit '5b4d959e54031f9e972f3e863f63e67fa4f5bfec'), which stems from the GSW-Fortran system (https://github.com/TEOS-10/GSW-Fortran) which in turn stems from the GSW-Matlab system (https://github.com/TEOS-10/GSW-Matlab). Consult http://www.teos-10.org to learn more about these software systems, their authorships, and the science behind it all.
A list containing pot_enthalpy_ice_freezing_SA
[ (J/kg)/(g/kg) ], the derivative of
potential enthalpy with respect to Absolute Salinity,
and pot_enthalpy_ice_freezing_p
[ unitless ], the derivative of
Conservative Temperature with respect to potential temperature. (Note that the second
quantity is denoted pot_enthalpy_ice_freezing_P
in the documentation for the Matlab function.)
http://www.teos-10.org/pubs/gsw/html/gsw_pot_enthalpy_ice_freezing_first_derivatives_poly.html
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324) p <- c( 10, 50, 125, 250, 600, 1000) r <- gsw_pot_enthalpy_ice_freezing_first_derivatives_poly(SA, p) expect_equal(r$pot_enthalpy_ice_freezing_SA/1e2, c(-1.183498006918154, -1.184135169530602, -1.184626138334419, -1.184032656542549, -1.183727371435808, -1.183805326863513)) expect_equal(r$pot_enthalpy_ice_freezing_p/1e-3, c(-0.202934280214689, -0.203136950111241, -0.203515960539503, -0.204145112153220, -0.205898365024147, -0.207885289186464))