Lmoments {nsRFA} | R Documentation |
Lmoments
provides the estimate of L-moments of a sample or regional L-moments of a region.
Lmoments (x) regionalLmoments (x,cod) LCV (x) LCA (x) Lkur (x)
x |
vector representing a data-sample (or data from many samples defined with |
cod |
array that defines the data subdivision among sites |
The estimation of L-moments is based on a sample of size n, arranged in ascending order. Let x(1:n) <= x(2:n) <= ... <= x(n:n) be the ordered sample. An unbiased estimator of the probability weighted moments βr is:
br = 1/n sum[j from r+1 to n](x(j:n) (j-1)(j-2)...(j-r)/(n-1)/(n-2)/.../(n-r))
The sample L-moments are defined by:
l1 = b0
l2 = 2b1 - b0
l3 = 6b2 - 6b1 + b0
l4 = 20b3 - 30b2 + 12b1 - b0
and in general
l(r+1) = sum[k from 0 to r](b_k (-1)^(r-k) (r+k)! / (k!)^2 / (r-k)!)
where r=0, 1, ..., n-1.
The sample L-moment ratios are defined by
tr = lr / l2
and the sample L-CV by
t = l2 / l1
Sample regional L-CV, L-skewness and L-kurtosis coefficients are defined as
t^R = sum[i from 1 to k](ni t^(i)) / sum[i from 1 to k](ni)
t3^R = sum[i from 1 to k](ni t3^(i)) / sum[i from 1 to k](ni)
t4^R = sum[i from 1 to k](ni t4^(i)) / sum[i from 1 to k](ni)
Lmoments
gives the L-moments (l_1, l_2, t, t_3, t_4), regionalLmoments
gives the regional weighted L-moments (l_1^R, l_2^R, t^R, t_3^R, t_4^R), LCV
gives the coefficient of L-variation, LCA
gives the L-skewness and Lkur
gives the L-kurtosis of x
.
For information on the package and the Author, and for all the references, see nsRFA
.
x <- rnorm(30,10,2) Lmoments(x) data(hydroSIMN) annualflows summary(annualflows) x <- annualflows["dato"][,] cod <- annualflows["cod"][,] split(x,cod) camp <- split(x,cod)$"45" Lmoments(camp) sapply(split(x,cod),Lmoments) regionalLmoments(x,cod)