cnSetProb-method {sdnet} | R Documentation |
The function sets the probability structure of a network from data according to the Maximum Likelihood criterion.
cnSetProb(object, data, pert=NULL, nodeCats=NULL, softmode=FALSE)
object |
a |
data |
a data |
pert |
a binary matrix with the dimensions of |
nodeCats |
a |
softmode |
a |
The function generates a new probability table for object
and returns an updated catNetwork
.
The graph structure of the object
is kept unchanged.
The data
can be a matrix
in the node-rows format,
or a data.frame
in the node-column format.
If given, the nodeCats
is used as a list of categories. In that case, nodeCats
should include the node categories presented in the data.
catNetwork
N. Balov
cnet <- cnRandomCatnet(numnodes=10, maxpars=3, numcats=3) psamples <- matrix(as.integer(1+rbinom(10*100, 2, 0.4)), nrow=10) rownames(psamples) <- cnet@nodes newcnet <- cnSetProb(object=cnet, data=psamples)