SocialNetworks {SocialNetworks} | R Documentation |
Generates a social network based on user inputted spatial xy coordinates.
Package: | SocialNetworks |
Type: | Package |
Version: | 1.1 |
Date: | 2014-08-20 |
License: | GPL |
Glenna Nightingale
Peter Nightingale
Maintainer: Glenna Nightingale <glenna.evans@gmail.com>
Bradbury, J. W., and S.L. Vehrencamp (1998). Principles of animal communication. Sinauer Associates.
Croft, D.P., James, R., and Krause, J. (2008). Exploring animal social networks. USA: Princeton University Press.
Funwi-Gabga, N., and Mateu, J. (2012). Understanding the nesting spatial behaviour of gorillas in the Kagwene Sanctuary, Cameroon. Stochastic Environmental Research and Risk Assessment, vol 26, pp. 793-811.
Hoppitt, W. and Laland, K. N. (2013). Social Learning: An Introduction to Mechanisms, Methods, and Models. Princeton University Press.
Illian, Moller, Waagepetersen, (2009). Hierarchical spatial point process analysis for a plant community of high biodiversity.Environ. Ecol. Stat. vol 16, pp 389-405
#Using pairwise distances to calcualate inter-individual associations # generate a social network from a regular spatial point pattern ir = 0.06 #------------------------------------------------------------------------- x = c(0.1023117, 0.1119260, 0.1625270, 0.3594291, 0.4220571, 0.4606205, 0.5927459, 0.6847543, 0.7065195, 0.7760657, 0.9827536) y = c(0.2525266, 0.3346728, 0.5275355, 0.2447207, 0.2765606, 0.4999600, 0.5928410, 0.8356211, 0.2506116, 0.8994760, 0.1432255) #plot(x,y) irset = c(rep(0.06,11)) calculateassociations(x,y,irset) # generate a social network from a clustered spatial point pattern #---------------------------------------------------------------- x = c(0.77302412, 0.82946034, 0.65776305, 0.62294479, 0.58577335, 0.39332654, 0.36893684, 0.40518735, 0.53956642, 0.56596859, 0.62802969, 0.10380876, 0.71058751, 0.65943692, 0.88056259, 0.90567566, 0.91166684, 0.89489341, 0.92668619, 0.01544599, 0.30499431, 0.28249059, 0.30733518, 0.73165075, 0.17712420, 0.80869511, 0.77351717, 0.75508022, 0.79445346, 0.73134413, 0.62448310, 0.60180882, 0.66741081, 0.45884352, 0.45282315, 0.45614636, 0.45270694, 0.44764728, 0.53259346) y= c(0.943378357, 0.933698623, 0.123641160, 0.146773076, 0.135097659, 0.978760171, 0.981407654, 0.937111187, 0.080617391, 0.114438404, 0.061834776, 0.370322731, 0.036576942, 0.003974257, 0.830356964, 0.837171526, 0.884801445, 0.797794654, 0.844312417, 0.969982888, 0.672246284, 0.692111852, 0.671098280, 0.999097233, 0.003736065, 0.255322335, 0.282689074, 0.310793806, 0.229047375, 0.266413304, 0.324984514, 0.279652338, 0.287134158, 0.331962948, 0.365469720, 0.343868765, 0.378876999, 0.331915785, 0.368805652) #plot(x,y) irset = c(rep(0.05,length(x))) calculateassociations(x,y,irset) # generate a social network from a random spatial point pattern #---------------------------------------------------------------- x = c( 0.74905296, 0.38309725, 0.98627509, 0.02242039, 0.54703348, 0.59173730, 0.82340399, 0.18718650, 0.49200511, 0.86098261, 0.24848640, 0.15843825, 0.72875205 ) y = c(0.73521480, 0.01661629, 0.51564570, 0.61856835, 0.20815448, 0.29431260, 0.35507188, 0.18940107, 0.98721494, 0.98129752, 0.76510267, 0.43541222, 0.04601392) #plot(x,y) irset = c(rep(0.1,length(x))) calculateassociations(x,y,irset) # Using the area of overlap between territorial zones to calcualate associations # generate a social network for four individuals, where an interaction radius is # specified for each individual # Note that the interaction radius for a group of individuals can be identical #------------------------------------------------------------------------------- calculate.areas(c(0.1, 0.2, 0.3,0.4), c(0.1, 0.2, 0.3, 0.4), c(0.1, 0.2, 0.3, 0.4),1000000) # create a social network for four individuals, with a separate interaction radius #for each individual