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Abstract

A species’ distribution can be characterized by either occurrence probability or population den-
sity, defined for all locations in some spatial extent. Defining distribution in terms of these two
parameters avoids the ambiguity surrounding the indices of occurrence or abundance produced by
many presence-only algorithms. The unmarked package contains methods of fitting occurrence and
abundance models, and can be used to produce distribution maps with the help of R’s GIS capabili-
ties, as is demonstrated in this vignette. Unlike many other tools for modeling species distributions,
the models in unmarked account for bias due to spatial and temporal heterogeneity in detection
probability. Furthermore, unmarked includes models of population dynamics, allowing one to map
quantities such as local colonization or extinction probability.

Mapping Occurrence Probability

In this example, we use the occu function to fit the single-season occupancy model of (MacKenzie
et al., 2002) to data on the European crossbill (Loxia curvirostra) collected in 267 1-km2 sample
quadrats in Switzerland, 1999 (Schmid et al., 2004). We then use the model to compute the expected
probability of occurrence at each pixel in a raster defining the Swiss landscape.

First we load the crossbill data, which contains the detection/non-detection data and covariates.
The dataset actually contains data from multiple years, but we are only going to analyze data from
the first year, 1999. A multi-year analysis of occupancy dynamics could be accomplished using the
colext function, and in addition to mapping occurrence probability, it would be possible to also map
colonization and extinction probabilities. The following commands format the data.

> data(crossbill)

> umf <- unmarkedFrameOccu(

y=as.matrix(crossbill[,c("det991", "det992", "det993")]),

siteCovs=crossbill[,c("ele", "forest")],

obsCovs=list(date=crossbill[,c("date991", "date992", "date993")]))

> sc <- scale(siteCovs(umf))

> siteCovs(umf) <- sc

> head(umf)

Data frame representation of unmarkedFrame object.

y.1 y.2 y.3 ele forest date.1 date.2 date.3

1 0 0 0 -1.15390803 -1.14710440 34 59 65

2 0 0 0 -1.15390803 -0.49668159 17 33 65

3 NA NA NA -0.21745379 -0.09920098 NA NA NA

4 0 0 0 -0.37352950 -0.93029679 29 59 65

5 0 0 0 -0.06137809 0.00920282 24 45 65

6 NA NA NA -0.99783232 -1.18323900 NA NA NA

7 0 0 0 -0.68568091 -1.03870060 26 54 74

8 0 0 0 -0.84175662 0.91256783 23 43 71

9 0 0 0 -0.99783232 -1.07483520 21 36 56

10 0 0 0 -0.99783232 -0.78575839 37 62 75

Notice that the site covariates, elevation and forest, were standardized using the scale function.
Standardization isn’t always necessary, but it can make it easier to find the maximum likelihood
estimates. When standardizing covariates and then making predictions, it is important to retain the
original sample mean and standard deviation. The reason for this is explained below.
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Figure 1: Elevation in Switzerland

Fitting a model is now straight-forward. In many cases, we would fit several models corresponding
to competing hypotheses, but for simplicity, we stick with this single model.

> (fm.occu <- occu(~date ~ele + I(ele^2) + forest, umf))

Call:

occu(formula = ~date ~ ele + I(ele^2) + forest, data = umf)

Occupancy:

Estimate SE z P(>|z|)

(Intercept) 0.464 0.541 0.857 0.39137

ele 1.228 0.319 3.846 0.00012

I(ele^2) -1.333 0.417 -3.194 0.00140

forest 0.654 0.274 2.385 0.01706

Detection:

Estimate SE z P(>|z|)

(Intercept) -2.2356 0.52283 -4.28 0.000019

date 0.0254 0.00752 3.39 0.000711

AIC: 455.3892

Now that we have our fitted model, we can use it to predict occurrence probability at each pixel
in the Swiss landscape. The Switzerland dataset contains country-wide data. There are many ways
to display it—here is an example of mapping elevation using the levelplot function in the lattice

package (Sarkar, 2008).

> data(Switzerland)

> print(levelplot(elevation ~ x + y, Switzerland, aspect="iso",

xlab="Easting (m)", ylab="Northing (m)",

col.regions=terrain.colors(100)))

The raster package (van Etten, 2012) provides another alternative. Here we create two raster
objects and specify the coordinate system.

> library(raster)

> elevation <- rasterFromXYZ(Switzerland[,c("x","y","elevation")],
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Figure 2: Elevation and forest cover, standardized.

crs="+proj=somerc +lat_0=46.95240555555556 +lon_0=7.439583333333333 +k_0=1 +x_0=600000 +y_0=200000 +ellps=bessel +towgs84=674.374,15.056,405.346,0,0,0,0 +units=m +no_defs")

> forest <- rasterFromXYZ(Switzerland[,c("x","y","forest")],

crs="+proj=somerc +lat_0=46.95240555555556 +lon_0=7.439583333333333 +k_0=1 +x_0=600000 +y_0=200000 +ellps=bessel +towgs84=674.374,15.056,405.346,0,0,0,0 +units=m +no_defs")

Since we standardized the covariates during the model fitting process, we need to transform the
country-wide data using the same values. Note, we don’t want to use the mean and SD of the rasters
themselves, we want to use the mean and SD of the original covariates used to fit the models, which
are stored as attributes of the sc object. The following commands display the original means and
SDs and then transform the rasters and join them in a raster “stack.”

> attr(sc, "scaled:center")

ele forest

1189.32584 34.74532

> attr(sc, "scaled:scale")

ele forest

640.71471 27.67431

> ele.s <- (elevation-1189)/640

> forest.s <- (forest-34.7)/27.7

> ef <- stack(ele.s, forest.s)

> names(ef) <- c("ele", "forest")

> plot(ef, col=terrain.colors(100))

It is important to assign names that exactly match the covariate names used to fit the model.
This is required by the predict function as demonstrated later. The predict function is useful for
computing spatially-referenced model predictions, standard errors, and confidence intervals, but it is
computationally demanding when there are many pixels in the raster. Thus, if measures of uncer-
tainty are not required, the following code can be used to quickly produce the species distribution
map shown in Fig.3.

> (beta <- coef(fm.occu, type="state"))

psi(Int) psi(ele) psi(I(ele^2)) psi(forest)

0.4638233 1.2276426 -1.3327186 0.6544976

> logit.psi <- beta[1] + beta[2]*ele.s + beta[3]*ele.s^2 + beta[4]*forest.s

> psi <- exp(logit.psi) / (1 + exp(logit.psi))

> #plot(psi, col=terrain.colors(100))

> print(spplot(psi, col.regions=terrain.colors(100)))

As of version 0.9-6, the predict method in unmarked can make predictions using an object of
class RasterStack from the raster package. As mentioned previously, the rasters must be named,
perhaps by using the names(someraster) <- somename method. The object returned by predict is
another raster stack with rasters for the expected values of the parameter of interest, the standard
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Figure 3: A species distribution map for the European crossbill in Switzerland. The colors represent
occurrence probability.

errors, and the upper and lower confidence intervals. The following example is very slow because
there are many of pixels in the raster. The resulting map is shown in Fig. 4.

> E.psi <- predict(fm.occu, type="state", newdata=ef)

> plot(E.psi, axes=FALSE, col=terrain.colors(100))

Users should be cautious when predicting from models that have categorical predictor variables,
i.e. factors. The raster package does not have advanced methods for handling factors, and thus
it is not easy to automatically create dummy variables from them as can typically be done using
model.matrix. The safest option is to create the dummy variables manually before fitting the models,
and to use the same variables as rasters for prediction.

A more important consideration when creating species distribution maps based upon occurrence
probability is that of spatial scale. Occurrence probability will typically depend upon the area of the
“site” in question. Thus, in our crossbill example, it would not be appropriate to use our model to
predict occcurrence probability for 10-km2 pixels since the surveys were done in 1-km2 quadrats. In
some cases it might be possible to directly model the effect of site area on occurrence probability, in
which case the effect could be accounted for in the predictions.

Mapping Population Density

Although distribution is typically described in terms of ocurrence probability, which is always better
than an index of occurrence probability, the best parameter for modeling species distribution is
population density because density allows for inference about popualation size in any region of the
species’ range. Furthermore, occurrence probability is simply the probablity that abundance is
greater than 0, so with density/abundance estimates, it is always possible to compute occurrence
probablity as a derived parameter.

In this example, we create a distribution map for the Island Scrub-Jay (Aphelocoma insularis),
which is restricted to Santa Cruz Island, California. To do so, we fit the hierarchical distance sampling
model of Royle et al. (2004), which allows for the estimation of abundance in each of the 300× 300m
pixels representing the island. The data were collected 307, 300-m radius point count (or “point
transect”) surveyed during the Fall of 2008.

Important This analysis is for demonstration purposes only, and the estimates of population size
should not be used for conservation or management purposes. Indeed, the Poisson assumption used
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Figure 4: Expected occurrence probability along with standard errors and the limits of the asymptotic
95% confidence interval.
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here was found to be inadequate by Sillett et al. (In press) who conducted a rigorous analysis and
reported reliable estimate of population size.

Although we are fitting a model of population density, the steps of the analysis closely mirror
those shown in the previous section. First, we format the data and fit a model, then we format the
island-wide covariates and make predictions. The three covariates thought to influence jay abundance
are elevation, forest cover, and chapararral cover. We also include include the area of the survey
plots in the analysis so that we can make predictions for regions of any area. Here is the code to
format the data and fit the model.

> data(issj)

> covs <- scale(issj[,c("elevation", "forest", "chaparral")])

> area <- pi*300^2 / 10000

> jayumf <- unmarkedFrameDS(y=as.matrix(issj[,1:3]),

siteCovs=data.frame(covs, area),

dist.breaks=c(0,100,200,300),

unitsIn="m", survey="point")

> head(jayumf)

Data frame representation of unmarkedFrame object.

y.1 y.2 y.3 elevation forest chaparral area

1 0 0 2 -1.20607849 -0.3309618 -0.1218243 28.27433

2 0 0 0 -0.36132054 -0.4429552 0.8384709 28.27433

3 0 0 0 -0.45797193 -0.3738751 2.1319298 28.27433

4 0 0 0 -0.14196112 1.3908065 -0.2737078 28.27433

5 0 0 0 -0.72588125 -0.4869152 -1.1562240 28.27433

6 0 0 0 0.01704522 0.6706992 0.2989173 28.27433

7 0 0 0 -0.11866710 -0.2671150 1.0326122 28.27433

8 0 0 0 -0.76411740 -0.4921486 -0.9332983 28.27433

9 0 0 0 0.40065595 0.5440524 -1.0759952 28.27433

10 0 0 0 -0.24030211 -0.4921486 -1.1023299 28.27433

> fm1 <- distsamp(~chaparral ~chaparral + elevation + offset(log(area)),

jayumf, keyfun="halfnorm", output="abund",

starts=c(-2.8,1,0,4.5,0))

> fm1

Call:

distsamp(formula = ~chaparral ~ chaparral + elevation + offset(log(area)),

data = jayumf, keyfun = "halfnorm", output = "abund", starts = c(-2.8,

1, 0, 4.5, 0))

Abundance:

Estimate SE z P(>|z|)

(Intercept) -2.827 0.1609 -17.57 4.34e-69

chaparral 0.957 0.1460 6.55 5.60e-11

elevation -0.244 0.0932 -2.61 8.96e-03

Detection:

Estimate SE z P(>|z|)

sigma(Intercept) 4.73 0.0845 55.96 0.000000

sigmachaparral -0.25 0.0744 -3.36 0.000773

AIC: 964.6426

Remarks. 1) The distance data were binned into 3 distance classes. 2) We used output="abund"

even though, by specifying the offset, we effectively modeled population density. As stated previously,
this allows us to make predictions of abundance for regions of arbitrary size.

The next thing to do is to format the raster data. For details, see the previous section—the
process is the same, except that we need a raster for “area”, the size of each pixel in the raster data.
This is necessary because the survey plots were larger than the pixels for which we want predictions
of abundance.

> data(cruz)

> elev <- rasterFromXYZ(cruz[,c("x","y","elevation")],

crs="+proj=utm +zone=11 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")

> forest <- rasterFromXYZ(cruz[,c("x","y","forest")],

crs="+proj=utm +zone=11 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")

> chap <- rasterFromXYZ(cruz[,c("x","y","chaparral")],

6



crs="+proj=utm +zone=11 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")

> area.raster <- chap

> values(area.raster) <- 300*300/10000 # area of a grid pixel

> attr(covs, "scaled:center")

elevation forest chaparral

202.0023616 0.0673357 0.2703592

> attr(covs, "scaled:scale")

elevation forest chaparral

124.8818069 0.1368199 0.2338295

> elev.s <- (elev-202)/125

> forest.s <- (forest-0.0673)/0.137

> chap.s <- (chap-0.270)/0.234

> habitat <- stack(elev.s, forest.s, chap.s, area.raster)

> names(habitat) <- c("elevation", "forest", "chaparral", "area")

Now, when we use predict, it will return the expected number of jays in each pixel along with
the standard errors and the 95% confidence intervals. We could sum these up to obtain an estimate
of total population size. Sillett et al. (In press) did this and used the parametric boostrap to estimate
the variance of total population size.

> E <- predict(fm1, type="state", newdata=habitat)

doing row 1000 of 5625

doing row 2000 of 5625

doing row 3000 of 5625

doing row 4000 of 5625

doing row 5000 of 5625

> plot(E, axes=FALSE, col=terrain.colors(100))
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Figure 5: Expected Island Scrub-Jay abundance, SEs, and 95% CIs.

8



References

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle, and C. A. Langtimm,
2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology
83:2248–2255.

Royle, J. A., D. K. Dawson, and S. Bates, 2004. Modeling abundance effects in distance sampling.
Ecology 85:1591–1597.

Sarkar, D., 2008. Lattice: Multivariate Data Visualization with R. Springer, New York. ISBN
978-0-387-75968-5.

Schmid, H., N. Zbinden, and V. Keller, 2004. Überwachung der bestandsentwicklung häufiger
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